Free cookie consent management tool by TermsFeed Policy Generator

source: branches/TSNE/HeuristicLab.Algorithms.DataAnalysis/3.4/NonlinearRegression/NonlinearRegression.cs @ 14443

Last change on this file since 14443 was 14319, checked in by gkronber, 8 years ago

#2657:

  • added switch to determine if numeric parameters should be initialized randomly.
  • fixed a bug in the infix parser
File size: 11.9 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Linq;
24using HeuristicLab.Analysis;
25using HeuristicLab.Common;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Optimization;
29using HeuristicLab.Parameters;
30using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
31using HeuristicLab.Problems.DataAnalysis;
32using HeuristicLab.Problems.DataAnalysis.Symbolic;
33using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
34using HeuristicLab.Random;
35
36namespace HeuristicLab.Algorithms.DataAnalysis {
37  /// <summary>
38  /// Nonlinear regression data analysis algorithm.
39  /// </summary>
40  [Item("Nonlinear Regression (NLR)", "Nonlinear regression (curve fitting) data analysis algorithm (wrapper for ALGLIB).")]
41  [Creatable(CreatableAttribute.Categories.DataAnalysisRegression, Priority = 120)]
42  [StorableClass]
43  public sealed class NonlinearRegression : FixedDataAnalysisAlgorithm<IRegressionProblem> {
44    private const string RegressionSolutionResultName = "Regression solution";
45    private const string ModelStructureParameterName = "Model structure";
46    private const string IterationsParameterName = "Iterations";
47    private const string RestartsParameterName = "Restarts";
48    private const string SetSeedRandomlyParameterName = "SetSeedRandomly";
49    private const string SeedParameterName = "Seed";
50    private const string InitParamsRandomlyParameterName = "InitializeParametersRandomly";
51
52    public IFixedValueParameter<StringValue> ModelStructureParameter {
53      get { return (IFixedValueParameter<StringValue>)Parameters[ModelStructureParameterName]; }
54    }
55    public IFixedValueParameter<IntValue> IterationsParameter {
56      get { return (IFixedValueParameter<IntValue>)Parameters[IterationsParameterName]; }
57    }
58
59    public IFixedValueParameter<BoolValue> SetSeedRandomlyParameter {
60      get { return (IFixedValueParameter<BoolValue>)Parameters[SetSeedRandomlyParameterName]; }
61    }
62
63    public IFixedValueParameter<IntValue> SeedParameter {
64      get { return (IFixedValueParameter<IntValue>)Parameters[SeedParameterName]; }
65    }
66
67    public IFixedValueParameter<IntValue> RestartsParameter {
68      get { return (IFixedValueParameter<IntValue>)Parameters[RestartsParameterName]; }
69    }
70
71    public IFixedValueParameter<BoolValue> InitParametersRandomlyParameter {
72      get { return (IFixedValueParameter<BoolValue>)Parameters[InitParamsRandomlyParameterName]; }
73    }
74
75    public string ModelStructure {
76      get { return ModelStructureParameter.Value.Value; }
77      set { ModelStructureParameter.Value.Value = value; }
78    }
79
80    public int Iterations {
81      get { return IterationsParameter.Value.Value; }
82      set { IterationsParameter.Value.Value = value; }
83    }
84
85    public int Restarts {
86      get { return RestartsParameter.Value.Value; }
87      set { RestartsParameter.Value.Value = value; }
88    }
89
90    public int Seed {
91      get { return SeedParameter.Value.Value; }
92      set { SeedParameter.Value.Value = value; }
93    }
94
95    public bool SetSeedRandomly {
96      get { return SetSeedRandomlyParameter.Value.Value; }
97      set { SetSeedRandomlyParameter.Value.Value = value; }
98    }
99
100    public bool InitializeParametersRandomly {
101      get { return InitParametersRandomlyParameter.Value.Value; }
102      set { InitParametersRandomlyParameter.Value.Value = value; }
103    }
104
105    [StorableConstructor]
106    private NonlinearRegression(bool deserializing) : base(deserializing) { }
107    private NonlinearRegression(NonlinearRegression original, Cloner cloner)
108      : base(original, cloner) {
109    }
110    public NonlinearRegression()
111      : base() {
112      Problem = new RegressionProblem();
113      Parameters.Add(new FixedValueParameter<StringValue>(ModelStructureParameterName, "The function for which the parameters must be fit (only numeric constants are tuned).", new StringValue("1.0 * x*x + 0.0")));
114      Parameters.Add(new FixedValueParameter<IntValue>(IterationsParameterName, "The maximum number of iterations for constants optimization.", new IntValue(200)));
115      Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of independent random restarts (>0)", new IntValue(10)));
116      Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The PRNG seed value.", new IntValue()));
117      Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
118      Parameters.Add(new FixedValueParameter<BoolValue>(InitParamsRandomlyParameterName, "Switch to determine if the real-valued model parameters should be initialized randomly in each restart.", new BoolValue(false)));
119
120      SetParameterHiddenState();
121
122      InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
123        SetParameterHiddenState();
124      };
125    }
126
127    private void SetParameterHiddenState() {
128      var hide = !InitializeParametersRandomly;
129      RestartsParameter.Hidden = hide;
130      SeedParameter.Hidden = hide;
131      SetSeedRandomlyParameter.Hidden = hide;
132    }
133
134    [StorableHook(HookType.AfterDeserialization)]
135    private void AfterDeserialization() {
136      // BackwardsCompatibility3.3
137      #region Backwards compatible code, remove with 3.4
138      if (!Parameters.ContainsKey(RestartsParameterName))
139        Parameters.Add(new FixedValueParameter<IntValue>(RestartsParameterName, "The number of independent random restarts", new IntValue(1)));
140      if (!Parameters.ContainsKey(SeedParameterName))
141        Parameters.Add(new FixedValueParameter<IntValue>(SeedParameterName, "The PRNG seed value.", new IntValue()));
142      if (!Parameters.ContainsKey(SetSeedRandomlyParameterName))
143        Parameters.Add(new FixedValueParameter<BoolValue>(SetSeedRandomlyParameterName, "Switch to determine if the random number seed should be initialized randomly.", new BoolValue(true)));
144      if (!Parameters.ContainsKey(InitParamsRandomlyParameterName))
145        Parameters.Add(new FixedValueParameter<BoolValue>(InitParamsRandomlyParameterName, "Switch to determine if the numeric parameters of the model should be initialized randomly.", new BoolValue(false)));
146
147      SetParameterHiddenState();
148      InitParametersRandomlyParameter.Value.ValueChanged += (sender, args) => {
149        SetParameterHiddenState();
150      };
151      #endregion
152    }
153
154    public override IDeepCloneable Clone(Cloner cloner) {
155      return new NonlinearRegression(this, cloner);
156    }
157
158    #region nonlinear regression
159    protected override void Run() {
160      IRegressionSolution bestSolution = null;
161      if (InitializeParametersRandomly) {
162        var qualityTable = new DataTable("RMSE table");
163        qualityTable.VisualProperties.YAxisLogScale = true;
164        var trainRMSERow = new DataRow("RMSE (train)");
165        trainRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
166        var testRMSERow = new DataRow("RMSE test");
167        testRMSERow.VisualProperties.ChartType = DataRowVisualProperties.DataRowChartType.Points;
168
169        qualityTable.Rows.Add(trainRMSERow);
170        qualityTable.Rows.Add(testRMSERow);
171        Results.Add(new Result(qualityTable.Name, qualityTable.Name + " for all restarts", qualityTable));
172        if (SetSeedRandomly) Seed = (new System.Random()).Next();
173        var rand = new MersenneTwister((uint)Seed);
174        bestSolution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand);
175        trainRMSERow.Values.Add(bestSolution.TrainingRootMeanSquaredError);
176        testRMSERow.Values.Add(bestSolution.TestRootMeanSquaredError);
177        for (int r = 0; r < Restarts; r++) {
178          var solution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations, rand);
179          trainRMSERow.Values.Add(solution.TrainingRootMeanSquaredError);
180          testRMSERow.Values.Add(solution.TestRootMeanSquaredError);
181          if (solution.TrainingRootMeanSquaredError < bestSolution.TrainingRootMeanSquaredError) {
182            bestSolution = solution;
183          }
184        }
185      } else {
186        bestSolution = CreateRegressionSolution(Problem.ProblemData, ModelStructure, Iterations);
187      }
188
189      Results.Add(new Result(RegressionSolutionResultName, "The nonlinear regression solution.", bestSolution));
190      Results.Add(new Result("Root mean square error (train)", "The root of the mean of squared errors of the regression solution on the training set.", new DoubleValue(bestSolution.TrainingRootMeanSquaredError)));
191      Results.Add(new Result("Root mean square error (test)", "The root of the mean of squared errors of the regression solution on the test set.", new DoubleValue(bestSolution.TestRootMeanSquaredError)));
192
193    }
194
195    /// <summary>
196    /// Fits a model to the data by optimizing the numeric constants.
197    /// Model is specified as infix expression containing variable names and numbers.
198    /// The starting point for the numeric constants is initialized randomly if a random number generator is specified (~N(0,1)). Otherwise the user specified constants are
199    /// used as a starting point.
200    /// </summary>-
201    /// <param name="problemData">Training and test data</param>
202    /// <param name="modelStructure">The function as infix expression</param>
203    /// <param name="maxIterations">Number of constant optimization iterations (using Levenberg-Marquardt algorithm)</param>
204    /// <param name="random">Optional random number generator for random initialization of numeric constants.</param>
205    /// <returns></returns>
206    public static ISymbolicRegressionSolution CreateRegressionSolution(IRegressionProblemData problemData, string modelStructure, int maxIterations, IRandom rand = null) {
207      var parser = new InfixExpressionParser();
208      var tree = parser.Parse(modelStructure);
209
210      if (!SymbolicRegressionConstantOptimizationEvaluator.CanOptimizeConstants(tree)) throw new ArgumentException("The optimizer does not support the specified model structure.");
211
212      // initialize constants randomly
213      if (rand != null) {
214        foreach (var node in tree.IterateNodesPrefix().OfType<ConstantTreeNode>()) {
215          double f = Math.Exp(NormalDistributedRandom.NextDouble(rand, 0, 1));
216          double s = rand.NextDouble() < 0.5 ? -1 : 1;
217          node.Value = s * node.Value * f;
218        }
219      }
220      var interpreter = new SymbolicDataAnalysisExpressionTreeLinearInterpreter();
221
222      SymbolicRegressionConstantOptimizationEvaluator.OptimizeConstants(interpreter, tree, problemData, problemData.TrainingIndices,
223        applyLinearScaling: false, maxIterations: maxIterations,
224        updateVariableWeights: false, updateConstantsInTree: true);
225
226      var scaledModel = new SymbolicRegressionModel(problemData.TargetVariable, tree, (ISymbolicDataAnalysisExpressionTreeInterpreter)interpreter.Clone());
227      scaledModel.Scale(problemData);
228      SymbolicRegressionSolution solution = new SymbolicRegressionSolution(scaledModel, (IRegressionProblemData)problemData.Clone());
229      solution.Model.Name = "Regression Model";
230      solution.Name = "Regression Solution";
231      return solution;
232    }
233    #endregion
234  }
235}
Note: See TracBrowser for help on using the repository browser.