1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
26 |
|
---|
27 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
28 | public static class AlglibUtil {
|
---|
29 | public static double[,] PrepareInputMatrix(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows) {
|
---|
30 | // check input variables. Only double variables are allowed.
|
---|
31 | var invalidInputs =
|
---|
32 | variables.Where(name => !dataset.VariableHasType<double>(name));
|
---|
33 | if (invalidInputs.Any())
|
---|
34 | throw new NotSupportedException("Unsupported inputs: " + string.Join(", ", invalidInputs));
|
---|
35 |
|
---|
36 | List<int> rowsList = rows.ToList();
|
---|
37 | double[,] matrix = new double[rowsList.Count, variables.Count()];
|
---|
38 |
|
---|
39 | int col = 0;
|
---|
40 | foreach (string column in variables) {
|
---|
41 | var values = dataset.GetDoubleValues(column, rows);
|
---|
42 | int row = 0;
|
---|
43 | foreach (var value in values) {
|
---|
44 | matrix[row, col] = value;
|
---|
45 | row++;
|
---|
46 | }
|
---|
47 | col++;
|
---|
48 | }
|
---|
49 |
|
---|
50 | return matrix;
|
---|
51 | }
|
---|
52 |
|
---|
53 | public static double[,] PrepareAndScaleInputMatrix(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, Scaling scaling) {
|
---|
54 | // check input variables. Only double variables are allowed.
|
---|
55 | var invalidInputs =
|
---|
56 | variables.Where(name => !dataset.VariableHasType<double>(name));
|
---|
57 | if (invalidInputs.Any())
|
---|
58 | throw new NotSupportedException("Unsupported inputs: " + string.Join(", ", invalidInputs));
|
---|
59 |
|
---|
60 | List<string> variablesList = variables.ToList();
|
---|
61 | List<int> rowsList = rows.ToList();
|
---|
62 |
|
---|
63 | double[,] matrix = new double[rowsList.Count, variablesList.Count];
|
---|
64 |
|
---|
65 | int col = 0;
|
---|
66 | foreach (string column in variables) {
|
---|
67 | var values = scaling.GetScaledValues(dataset, column, rows);
|
---|
68 | int row = 0;
|
---|
69 | foreach (var value in values) {
|
---|
70 | matrix[row, col] = value;
|
---|
71 | row++;
|
---|
72 | }
|
---|
73 | col++;
|
---|
74 | }
|
---|
75 |
|
---|
76 | return matrix;
|
---|
77 | }
|
---|
78 |
|
---|
79 | /// <summary>
|
---|
80 | /// Prepares a binary data matrix from a number of factors and specified factor values
|
---|
81 | /// </summary>
|
---|
82 | /// <param name="dataset">A dataset that contains the variable values</param>
|
---|
83 | /// <param name="factorVariables">An enumerable of categorical variables (factors). For each variable an enumerable of values must be specified.</param>
|
---|
84 | /// <param name="rows">An enumerable of row indices for the dataset</param>
|
---|
85 | /// <returns></returns>
|
---|
86 | /// <remarks>Factor variables (categorical variables) are split up into multiple binary variables one for each specified value.</remarks>
|
---|
87 | public static double[,] PrepareInputMatrix(
|
---|
88 | IDataset dataset,
|
---|
89 | IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables,
|
---|
90 | IEnumerable<int> rows) {
|
---|
91 | // check input variables. Only string variables are allowed.
|
---|
92 | var invalidInputs =
|
---|
93 | factorVariables.Select(kvp => kvp.Key).Where(name => !dataset.VariableHasType<string>(name));
|
---|
94 | if (invalidInputs.Any())
|
---|
95 | throw new NotSupportedException("Unsupported inputs: " + string.Join(", ", invalidInputs));
|
---|
96 |
|
---|
97 | int numBinaryColumns = factorVariables.Sum(kvp => kvp.Value.Count());
|
---|
98 |
|
---|
99 | List<int> rowsList = rows.ToList();
|
---|
100 | double[,] matrix = new double[rowsList.Count, numBinaryColumns];
|
---|
101 |
|
---|
102 | int col = 0;
|
---|
103 | foreach (var kvp in factorVariables) {
|
---|
104 | var varName = kvp.Key;
|
---|
105 | var cats = kvp.Value;
|
---|
106 | if (!cats.Any()) continue;
|
---|
107 | foreach (var cat in cats) {
|
---|
108 | var values = dataset.GetStringValues(varName, rows);
|
---|
109 | int row = 0;
|
---|
110 | foreach (var value in values) {
|
---|
111 | matrix[row, col] = value == cat ? 1 : 0;
|
---|
112 | row++;
|
---|
113 | }
|
---|
114 | col++;
|
---|
115 | }
|
---|
116 | }
|
---|
117 | return matrix;
|
---|
118 | }
|
---|
119 |
|
---|
120 | public static IEnumerable<KeyValuePair<string, IEnumerable<string>>> GetFactorVariableValues(IDataset ds, IEnumerable<string> factorVariables, IEnumerable<int> rows) {
|
---|
121 | return from factor in factorVariables
|
---|
122 | let distinctValues = ds.GetStringValues(factor, rows).Distinct().ToArray()
|
---|
123 | // 1 distinct value => skip (constant)
|
---|
124 | // 2 distinct values => only take one of the two values
|
---|
125 | // >=3 distinct values => create a binary value for each value
|
---|
126 | let reducedValues = distinctValues.Length <= 2
|
---|
127 | ? distinctValues.Take(distinctValues.Length - 1)
|
---|
128 | : distinctValues
|
---|
129 | select new KeyValuePair<string, IEnumerable<string>>(factor, reducedValues);
|
---|
130 | }
|
---|
131 | }
|
---|
132 | }
|
---|