[5617] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[14185] | 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5617] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[14836] | 22 | using System;
|
---|
[5617] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 26 |
|
---|
| 27 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
[5658] | 28 | public static class AlglibUtil {
|
---|
[12509] | 29 | public static double[,] PrepareInputMatrix(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows) {
|
---|
[14836] | 30 | // check input variables. Only double variables are allowed.
|
---|
| 31 | var invalidInputs =
|
---|
| 32 | variables.Where(name => !dataset.VariableHasType<double>(name));
|
---|
| 33 | if (invalidInputs.Any())
|
---|
| 34 | throw new NotSupportedException("Unsupported inputs: " + string.Join(", ", invalidInputs));
|
---|
| 35 |
|
---|
[7097] | 36 | List<int> rowsList = rows.ToList();
|
---|
[14836] | 37 | double[,] matrix = new double[rowsList.Count, variables.Count()];
|
---|
[6802] | 38 |
|
---|
[6740] | 39 | int col = 0;
|
---|
[7097] | 40 | foreach (string column in variables) {
|
---|
| 41 | var values = dataset.GetDoubleValues(column, rows);
|
---|
| 42 | int row = 0;
|
---|
| 43 | foreach (var value in values) {
|
---|
| 44 | matrix[row, col] = value;
|
---|
| 45 | row++;
|
---|
[5617] | 46 | }
|
---|
[7097] | 47 | col++;
|
---|
[5617] | 48 | }
|
---|
[7097] | 49 |
|
---|
[5617] | 50 | return matrix;
|
---|
| 51 | }
|
---|
[14836] | 52 |
|
---|
[12509] | 53 | public static double[,] PrepareAndScaleInputMatrix(IDataset dataset, IEnumerable<string> variables, IEnumerable<int> rows, Scaling scaling) {
|
---|
[14836] | 54 | // check input variables. Only double variables are allowed.
|
---|
| 55 | var invalidInputs =
|
---|
| 56 | variables.Where(name => !dataset.VariableHasType<double>(name));
|
---|
| 57 | if (invalidInputs.Any())
|
---|
| 58 | throw new NotSupportedException("Unsupported inputs: " + string.Join(", ", invalidInputs));
|
---|
| 59 |
|
---|
[8323] | 60 | List<string> variablesList = variables.ToList();
|
---|
| 61 | List<int> rowsList = rows.ToList();
|
---|
| 62 |
|
---|
| 63 | double[,] matrix = new double[rowsList.Count, variablesList.Count];
|
---|
| 64 |
|
---|
| 65 | int col = 0;
|
---|
| 66 | foreach (string column in variables) {
|
---|
| 67 | var values = scaling.GetScaledValues(dataset, column, rows);
|
---|
| 68 | int row = 0;
|
---|
| 69 | foreach (var value in values) {
|
---|
| 70 | matrix[row, col] = value;
|
---|
| 71 | row++;
|
---|
| 72 | }
|
---|
| 73 | col++;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | return matrix;
|
---|
| 77 | }
|
---|
[14836] | 78 |
|
---|
| 79 | /// <summary>
|
---|
| 80 | /// Prepares a binary data matrix from a number of factors and specified factor values
|
---|
| 81 | /// </summary>
|
---|
| 82 | /// <param name="dataset">A dataset that contains the variable values</param>
|
---|
| 83 | /// <param name="factorVariables">An enumerable of categorical variables (factors). For each variable an enumerable of values must be specified.</param>
|
---|
| 84 | /// <param name="rows">An enumerable of row indices for the dataset</param>
|
---|
| 85 | /// <returns></returns>
|
---|
| 86 | /// <remarks>Factor variables (categorical variables) are split up into multiple binary variables one for each specified value.</remarks>
|
---|
| 87 | public static double[,] PrepareInputMatrix(
|
---|
| 88 | IDataset dataset,
|
---|
| 89 | IEnumerable<KeyValuePair<string, IEnumerable<string>>> factorVariables,
|
---|
| 90 | IEnumerable<int> rows) {
|
---|
| 91 | // check input variables. Only string variables are allowed.
|
---|
| 92 | var invalidInputs =
|
---|
| 93 | factorVariables.Select(kvp => kvp.Key).Where(name => !dataset.VariableHasType<string>(name));
|
---|
| 94 | if (invalidInputs.Any())
|
---|
| 95 | throw new NotSupportedException("Unsupported inputs: " + string.Join(", ", invalidInputs));
|
---|
| 96 |
|
---|
| 97 | int numBinaryColumns = factorVariables.Sum(kvp => kvp.Value.Count());
|
---|
| 98 |
|
---|
| 99 | List<int> rowsList = rows.ToList();
|
---|
| 100 | double[,] matrix = new double[rowsList.Count, numBinaryColumns];
|
---|
| 101 |
|
---|
| 102 | int col = 0;
|
---|
| 103 | foreach (var kvp in factorVariables) {
|
---|
| 104 | var varName = kvp.Key;
|
---|
| 105 | var cats = kvp.Value;
|
---|
| 106 | if (!cats.Any()) continue;
|
---|
| 107 | foreach (var cat in cats) {
|
---|
| 108 | var values = dataset.GetStringValues(varName, rows);
|
---|
| 109 | int row = 0;
|
---|
| 110 | foreach (var value in values) {
|
---|
| 111 | matrix[row, col] = value == cat ? 1 : 0;
|
---|
| 112 | row++;
|
---|
| 113 | }
|
---|
| 114 | col++;
|
---|
| 115 | }
|
---|
| 116 | }
|
---|
| 117 | return matrix;
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | public static IEnumerable<KeyValuePair<string, IEnumerable<string>>> GetFactorVariableValues(IDataset ds, IEnumerable<string> factorVariables, IEnumerable<int> rows) {
|
---|
| 121 | return from factor in factorVariables
|
---|
| 122 | let distinctValues = ds.GetStringValues(factor, rows).Distinct().ToArray()
|
---|
| 123 | // 1 distinct value => skip (constant)
|
---|
| 124 | // 2 distinct values => only take one of the two values
|
---|
| 125 | // >=3 distinct values => create a binary value for each value
|
---|
| 126 | let reducedValues = distinctValues.Length <= 2
|
---|
| 127 | ? distinctValues.Take(distinctValues.Length - 1)
|
---|
| 128 | : distinctValues
|
---|
| 129 | select new KeyValuePair<string, IEnumerable<string>>(factor, reducedValues);
|
---|
| 130 | }
|
---|
[5617] | 131 | }
|
---|
| 132 | }
|
---|