Free cookie consent management tool by TermsFeed Policy Generator

source: branches/SymbolicSimplifier/HeuristicLab.Problems.DataAnalysis/3.3/SupportVectorMachine/SupportVectorMachineUtil.cs @ 4879

Last change on this file since 4879 was 4543, checked in by gkronber, 14 years ago

Adapted SVM classes to work correctly for overlapping training / test partitions. #1226

File size: 2.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Collections.Generic;
23using System.Linq;
24
25namespace HeuristicLab.Problems.DataAnalysis.SupportVectorMachine {
26  public class SupportVectorMachineUtil {
27    /// <summary>
28    /// Transforms <paramref name="problemData"/> into a data structure as needed by libSVM.
29    /// </summary>
30    /// <param name="problemData">The problem data to transform</param>
31    /// <param name="rowIndices">The rows of the dataset that should be contained in the resulting SVM-problem</param>
32    /// <returns>A problem data type that can be used to train a support vector machine.</returns>
33    public static SVM.Problem CreateSvmProblem(DataAnalysisProblemData problemData, IEnumerable<int> rowIndices) {
34      double[] targetVector =
35        problemData.Dataset.GetEnumeratedVariableValues(problemData.TargetVariable.Value, rowIndices)
36        .ToArray();
37
38      SVM.Node[][] nodes = new SVM.Node[targetVector.Length][];
39      List<SVM.Node> tempRow;
40      int maxNodeIndex = 0;
41      int svmProblemRowIndex = 0;
42      foreach (int row in rowIndices) {
43        tempRow = new List<SVM.Node>();
44        foreach (var inputVariable in problemData.InputVariables.CheckedItems) {
45          int col = problemData.Dataset.GetVariableIndex(inputVariable.Value.Value);
46          double value = problemData.Dataset[row, col];
47          if (!double.IsNaN(value)) {
48            int nodeIndex = col + 1; // make sure the smallest nodeIndex is 1 (libSVM convention)
49            tempRow.Add(new SVM.Node(nodeIndex, value));
50            if (nodeIndex > maxNodeIndex) maxNodeIndex = nodeIndex;
51          }
52        }
53        nodes[svmProblemRowIndex++] = tempRow.OrderBy(x => x.Index).ToArray(); // make sure the values are sorted by node index
54      }
55
56      return new SVM.Problem(targetVector.Length, targetVector, nodes, maxNodeIndex);
57    }
58  }
59}
Note: See TracBrowser for help on using the repository browser.