1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 | using HeuristicLab.PluginInfrastructure;
|
---|
29 |
|
---|
30 | namespace HeuristicLab.Encodings.SymbolicExpressionTreeEncoding {
|
---|
31 | [NonDiscoverableType]
|
---|
32 | [StorableClass]
|
---|
33 | [Item("ProbabilisticTreeCreator", "An operator that creates new symbolic expression trees with uniformly distributed length")]
|
---|
34 | public class ProbabilisticTreeCreator : SymbolicExpressionTreeCreator,
|
---|
35 | ISymbolicExpressionTreeSizeConstraintOperator, ISymbolicExpressionTreeGrammarBasedOperator {
|
---|
36 | private const int MAX_TRIES = 100;
|
---|
37 |
|
---|
38 | [StorableConstructor]
|
---|
39 | protected ProbabilisticTreeCreator(bool deserializing) : base(deserializing) { }
|
---|
40 | protected ProbabilisticTreeCreator(ProbabilisticTreeCreator original, Cloner cloner) : base(original, cloner) { }
|
---|
41 | public ProbabilisticTreeCreator()
|
---|
42 | : base() {
|
---|
43 |
|
---|
44 | }
|
---|
45 |
|
---|
46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
47 | return new ProbabilisticTreeCreator(this, cloner);
|
---|
48 | }
|
---|
49 |
|
---|
50 |
|
---|
51 | protected override ISymbolicExpressionTree Create(IRandom random) {
|
---|
52 | return Create(random, ClonedSymbolicExpressionTreeGrammarParameter.ActualValue,
|
---|
53 | MaximumSymbolicExpressionTreeLengthParameter.ActualValue.Value, MaximumSymbolicExpressionTreeDepthParameter.ActualValue.Value);
|
---|
54 | }
|
---|
55 |
|
---|
56 | public override ISymbolicExpressionTree CreateTree(IRandom random, ISymbolicExpressionGrammar grammar, int maxTreeLength, int maxTreeDepth) {
|
---|
57 | return Create(random, grammar, maxTreeLength, maxTreeDepth);
|
---|
58 | }
|
---|
59 |
|
---|
60 | public static ISymbolicExpressionTree Create(IRandom random, ISymbolicExpressionGrammar grammar, int maxTreeLength, int maxTreeDepth) {
|
---|
61 | SymbolicExpressionTree tree = new SymbolicExpressionTree();
|
---|
62 | var rootNode = (SymbolicExpressionTreeTopLevelNode)grammar.ProgramRootSymbol.CreateTreeNode();
|
---|
63 | if (rootNode.HasLocalParameters) rootNode.ResetLocalParameters(random);
|
---|
64 | rootNode.SetGrammar(grammar.CreateExpressionTreeGrammar());
|
---|
65 |
|
---|
66 | var startNode = (SymbolicExpressionTreeTopLevelNode)grammar.StartSymbol.CreateTreeNode();
|
---|
67 | if (startNode.HasLocalParameters) startNode.ResetLocalParameters(random);
|
---|
68 | startNode.SetGrammar(grammar.CreateExpressionTreeGrammar());
|
---|
69 |
|
---|
70 | rootNode.AddSubtree(startNode);
|
---|
71 | PTC2(random, startNode, maxTreeLength, maxTreeDepth);
|
---|
72 | tree.Root = rootNode;
|
---|
73 | return tree;
|
---|
74 | }
|
---|
75 |
|
---|
76 | private class TreeExtensionPoint {
|
---|
77 | public ISymbolicExpressionTreeNode Parent { get; set; }
|
---|
78 | public int ChildIndex { get; set; }
|
---|
79 | public int ExtensionPointDepth { get; set; }
|
---|
80 | public int MaximumExtensionLength { get; set; }
|
---|
81 | public int MinimumExtensionLength { get; set; }
|
---|
82 | }
|
---|
83 |
|
---|
84 | public static void PTC2(IRandom random, ISymbolicExpressionTreeNode seedNode,
|
---|
85 | int maxLength, int maxDepth) {
|
---|
86 | // make sure it is possible to create a trees smaller than maxLength and maxDepth
|
---|
87 | if (seedNode.Grammar.GetMinimumExpressionLength(seedNode.Symbol) > maxLength)
|
---|
88 | throw new ArgumentException("Cannot create trees of length " + maxLength + " or shorter because of grammar constraints.", "maxLength");
|
---|
89 | if (seedNode.Grammar.GetMinimumExpressionDepth(seedNode.Symbol) > maxDepth)
|
---|
90 | throw new ArgumentException("Cannot create trees of depth " + maxDepth + " or smaller because of grammar constraints.", "maxDepth");
|
---|
91 |
|
---|
92 | // tree length is limited by the grammar and by the explicit size constraints
|
---|
93 | int allowedMinLength = seedNode.Grammar.GetMinimumExpressionLength(seedNode.Symbol);
|
---|
94 | int allowedMaxLength = Math.Min(maxLength, seedNode.Grammar.GetMaximumExpressionLength(seedNode.Symbol, maxDepth));
|
---|
95 | int tries = 0;
|
---|
96 | while (tries++ < MAX_TRIES) {
|
---|
97 | // select a target tree length uniformly in the possible range (as determined by explicit limits and limits of the grammar)
|
---|
98 | int targetTreeLength;
|
---|
99 | targetTreeLength = random.Next(allowedMinLength, allowedMaxLength + 1);
|
---|
100 | if (targetTreeLength <= 1 || maxDepth <= 1) return;
|
---|
101 |
|
---|
102 | bool success = TryCreateFullTreeFromSeed(random, seedNode, targetTreeLength - 1, maxDepth - 1);
|
---|
103 |
|
---|
104 | // if successful => check constraints and return the tree if everything looks ok
|
---|
105 | if (success && seedNode.GetLength() <= maxLength && seedNode.GetDepth() <= maxDepth) {
|
---|
106 | return;
|
---|
107 | } else {
|
---|
108 | // clean seedNode
|
---|
109 | while (seedNode.Subtrees.Count() > 0) seedNode.RemoveSubtree(0);
|
---|
110 | }
|
---|
111 | // try a different length MAX_TRIES times
|
---|
112 | }
|
---|
113 | throw new ArgumentException("Couldn't create a random valid tree.");
|
---|
114 | }
|
---|
115 |
|
---|
116 | private static bool TryCreateFullTreeFromSeed(IRandom random, ISymbolicExpressionTreeNode root,
|
---|
117 | int targetLength, int maxDepth) {
|
---|
118 | List<TreeExtensionPoint> extensionPoints = new List<TreeExtensionPoint>();
|
---|
119 | int currentLength = 0;
|
---|
120 | int actualArity = SampleArity(random, root, targetLength, maxDepth);
|
---|
121 | if (actualArity < 0) return false;
|
---|
122 |
|
---|
123 | for (int i = 0; i < actualArity; i++) {
|
---|
124 | // insert a dummy sub-tree and add the pending extension to the list
|
---|
125 | var dummy = new SymbolicExpressionTreeNode();
|
---|
126 | root.AddSubtree(dummy);
|
---|
127 | var x = new TreeExtensionPoint { Parent = root, ChildIndex = i, ExtensionPointDepth = 0 };
|
---|
128 | FillExtensionLengths(x, maxDepth);
|
---|
129 | extensionPoints.Add(x);
|
---|
130 | }
|
---|
131 | //necessary to use long data type as the extension point length could be int.MaxValue
|
---|
132 | long minExtensionPointsLength = extensionPoints.Select(x => (long)x.MinimumExtensionLength).Sum();
|
---|
133 | long maxExtensionPointsLength = extensionPoints.Select(x => (long)x.MaximumExtensionLength).Sum();
|
---|
134 |
|
---|
135 | // while there are pending extension points and we have not reached the limit of adding new extension points
|
---|
136 | while (extensionPoints.Count > 0 && minExtensionPointsLength + currentLength <= targetLength) {
|
---|
137 | int randomIndex = random.Next(extensionPoints.Count);
|
---|
138 | TreeExtensionPoint nextExtension = extensionPoints[randomIndex];
|
---|
139 | extensionPoints.RemoveAt(randomIndex);
|
---|
140 | ISymbolicExpressionTreeNode parent = nextExtension.Parent;
|
---|
141 | int argumentIndex = nextExtension.ChildIndex;
|
---|
142 | int extensionDepth = nextExtension.ExtensionPointDepth;
|
---|
143 |
|
---|
144 | if (parent.Grammar.GetMinimumExpressionDepth(parent.Symbol) > maxDepth - extensionDepth) {
|
---|
145 | ReplaceWithMinimalTree(random, root, parent, argumentIndex);
|
---|
146 | int insertedTreeLength = parent.GetSubtree(argumentIndex).GetLength();
|
---|
147 | currentLength += insertedTreeLength;
|
---|
148 | minExtensionPointsLength -= insertedTreeLength;
|
---|
149 | maxExtensionPointsLength -= insertedTreeLength;
|
---|
150 | } else {
|
---|
151 | //remove currently chosen extension point from calculation
|
---|
152 | minExtensionPointsLength -= nextExtension.MinimumExtensionLength;
|
---|
153 | maxExtensionPointsLength -= nextExtension.MaximumExtensionLength;
|
---|
154 |
|
---|
155 | var symbols = from s in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, argumentIndex)
|
---|
156 | where s.InitialFrequency > 0.0
|
---|
157 | where parent.Grammar.GetMinimumExpressionDepth(s) <= maxDepth - extensionDepth
|
---|
158 | where parent.Grammar.GetMinimumExpressionLength(s) <= targetLength - currentLength - minExtensionPointsLength
|
---|
159 | select s;
|
---|
160 | if (maxExtensionPointsLength < targetLength - currentLength)
|
---|
161 | symbols = from s in symbols
|
---|
162 | where parent.Grammar.GetMaximumExpressionLength(s, maxDepth - extensionDepth) >= targetLength - currentLength - maxExtensionPointsLength
|
---|
163 | select s;
|
---|
164 | var allowedSymbols = symbols.ToList();
|
---|
165 |
|
---|
166 | if (allowedSymbols.Count == 0) return false;
|
---|
167 | var weights = allowedSymbols.Select(x => x.InitialFrequency).ToList();
|
---|
168 | var selectedSymbol = allowedSymbols.SelectRandom(weights, random);
|
---|
169 | ISymbolicExpressionTreeNode newTree = selectedSymbol.CreateTreeNode();
|
---|
170 | if (newTree.HasLocalParameters) newTree.ResetLocalParameters(random);
|
---|
171 | parent.RemoveSubtree(argumentIndex);
|
---|
172 | parent.InsertSubtree(argumentIndex, newTree);
|
---|
173 |
|
---|
174 | var topLevelNode = newTree as SymbolicExpressionTreeTopLevelNode;
|
---|
175 | if (topLevelNode != null)
|
---|
176 | topLevelNode.SetGrammar((ISymbolicExpressionTreeGrammar)root.Grammar.Clone());
|
---|
177 |
|
---|
178 | currentLength++;
|
---|
179 | actualArity = SampleArity(random, newTree, targetLength - currentLength, maxDepth - extensionDepth);
|
---|
180 | if (actualArity < 0) return false;
|
---|
181 | for (int i = 0; i < actualArity; i++) {
|
---|
182 | // insert a dummy sub-tree and add the pending extension to the list
|
---|
183 | var dummy = new SymbolicExpressionTreeNode();
|
---|
184 | newTree.AddSubtree(dummy);
|
---|
185 | var x = new TreeExtensionPoint { Parent = newTree, ChildIndex = i, ExtensionPointDepth = extensionDepth + 1 };
|
---|
186 | FillExtensionLengths(x, maxDepth);
|
---|
187 | extensionPoints.Add(x);
|
---|
188 | maxExtensionPointsLength += x.MaximumExtensionLength;
|
---|
189 | minExtensionPointsLength += x.MinimumExtensionLength;
|
---|
190 | }
|
---|
191 | }
|
---|
192 | }
|
---|
193 | // fill all pending extension points
|
---|
194 | while (extensionPoints.Count > 0) {
|
---|
195 | int randomIndex = random.Next(extensionPoints.Count);
|
---|
196 | TreeExtensionPoint nextExtension = extensionPoints[randomIndex];
|
---|
197 | extensionPoints.RemoveAt(randomIndex);
|
---|
198 | ISymbolicExpressionTreeNode parent = nextExtension.Parent;
|
---|
199 | int a = nextExtension.ChildIndex;
|
---|
200 | ReplaceWithMinimalTree(random, root, parent, a);
|
---|
201 | }
|
---|
202 | return true;
|
---|
203 | }
|
---|
204 |
|
---|
205 | private static void ReplaceWithMinimalTree(IRandom random, ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode parent,
|
---|
206 | int childIndex) {
|
---|
207 | // determine possible symbols that will lead to the smallest possible tree
|
---|
208 | var possibleSymbols = (from s in parent.Grammar.GetAllowedChildSymbols(parent.Symbol, childIndex)
|
---|
209 | where s.InitialFrequency > 0.0
|
---|
210 | group s by parent.Grammar.GetMinimumExpressionLength(s) into g
|
---|
211 | orderby g.Key
|
---|
212 | select g).First().ToList();
|
---|
213 | var weights = possibleSymbols.Select(x => x.InitialFrequency).ToList();
|
---|
214 | var selectedSymbol = possibleSymbols.SelectRandom(weights, random);
|
---|
215 | var tree = selectedSymbol.CreateTreeNode();
|
---|
216 | if (tree.HasLocalParameters) tree.ResetLocalParameters(random);
|
---|
217 | parent.RemoveSubtree(childIndex);
|
---|
218 | parent.InsertSubtree(childIndex, tree);
|
---|
219 |
|
---|
220 | var topLevelNode = tree as SymbolicExpressionTreeTopLevelNode;
|
---|
221 | if (topLevelNode != null)
|
---|
222 | topLevelNode.SetGrammar((ISymbolicExpressionTreeGrammar)root.Grammar.Clone());
|
---|
223 |
|
---|
224 | for (int i = 0; i < tree.Grammar.GetMinimumSubtreeCount(tree.Symbol); i++) {
|
---|
225 | // insert a dummy sub-tree and add the pending extension to the list
|
---|
226 | var dummy = new SymbolicExpressionTreeNode();
|
---|
227 | tree.AddSubtree(dummy);
|
---|
228 | // replace the just inserted dummy by recursive application
|
---|
229 | ReplaceWithMinimalTree(random, root, tree, i);
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | private static void FillExtensionLengths(TreeExtensionPoint extension, int maxDepth) {
|
---|
234 | var grammar = extension.Parent.Grammar;
|
---|
235 | int maxLength = int.MinValue;
|
---|
236 | int minLength = int.MaxValue;
|
---|
237 | foreach (ISymbol s in grammar.GetAllowedChildSymbols(extension.Parent.Symbol, extension.ChildIndex)) {
|
---|
238 | if (s.InitialFrequency > 0.0) {
|
---|
239 | int max = grammar.GetMaximumExpressionLength(s, maxDepth - extension.ExtensionPointDepth);
|
---|
240 | maxLength = Math.Max(maxLength, max);
|
---|
241 | int min = grammar.GetMinimumExpressionLength(s);
|
---|
242 | minLength = Math.Min(minLength, min);
|
---|
243 | }
|
---|
244 | }
|
---|
245 |
|
---|
246 | extension.MaximumExtensionLength = maxLength;
|
---|
247 | extension.MinimumExtensionLength = minLength;
|
---|
248 | }
|
---|
249 |
|
---|
250 | private static int SampleArity(IRandom random, ISymbolicExpressionTreeNode node, int targetLength, int maxDepth) {
|
---|
251 | // select actualArity randomly with the constraint that the sub-trees in the minimal arity can become large enough
|
---|
252 | int minArity = node.Grammar.GetMinimumSubtreeCount(node.Symbol);
|
---|
253 | int maxArity = node.Grammar.GetMaximumSubtreeCount(node.Symbol);
|
---|
254 | if (maxArity > targetLength) {
|
---|
255 | maxArity = targetLength;
|
---|
256 | }
|
---|
257 | if (minArity == maxArity) return minArity;
|
---|
258 |
|
---|
259 | // the min number of sub-trees has to be set to a value that is large enough so that the largest possible tree is at least tree length
|
---|
260 | // if 1..3 trees are possible and the largest possible first sub-tree is smaller larger than the target length then minArity should be at least 2
|
---|
261 | long aggregatedLongestExpressionLength = 0;
|
---|
262 | for (int i = 0; i < maxArity; i++) {
|
---|
263 | aggregatedLongestExpressionLength += (from s in node.Grammar.GetAllowedChildSymbols(node.Symbol, i)
|
---|
264 | where s.InitialFrequency > 0.0
|
---|
265 | select node.Grammar.GetMaximumExpressionLength(s, maxDepth)).Max();
|
---|
266 | if (i > minArity && aggregatedLongestExpressionLength < targetLength) minArity = i + 1;
|
---|
267 | else break;
|
---|
268 | }
|
---|
269 |
|
---|
270 | // the max number of sub-trees has to be set to a value that is small enough so that the smallest possible tree is at most tree length
|
---|
271 | // if 1..3 trees are possible and the smallest possible first sub-tree is already larger than the target length then maxArity should be at most 0
|
---|
272 | long aggregatedShortestExpressionLength = 0;
|
---|
273 | for (int i = 0; i < maxArity; i++) {
|
---|
274 | aggregatedShortestExpressionLength += (from s in node.Grammar.GetAllowedChildSymbols(node.Symbol, i)
|
---|
275 | where s.InitialFrequency > 0.0
|
---|
276 | select node.Grammar.GetMinimumExpressionLength(s)).Min();
|
---|
277 | if (aggregatedShortestExpressionLength > targetLength) {
|
---|
278 | maxArity = i;
|
---|
279 | break;
|
---|
280 | }
|
---|
281 | }
|
---|
282 | if (minArity > maxArity) return -1;
|
---|
283 | return random.Next(minArity, maxArity + 1);
|
---|
284 | }
|
---|
285 |
|
---|
286 | }
|
---|
287 | } |
---|