Free cookie consent management tool by TermsFeed Policy Generator

source: branches/SymbolicExpressionTreeDiversityAnalyzers/HeuristicLab.Problems.DataAnalysis.Symbolic/3.4/TransformationToSymbolicTreeMapper.cs @ 12626

Last change on this file since 12626 was 12028, checked in by bburlacu, 10 years ago

#2326: Branched HeuristicLab.Problems.DataAnalysis.Symbolic, initial commit.

File size: 11.7 KB
RevLine 
[10845]1#region License Information
2/* HeuristicLab
[12012]3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[10845]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
[10846]22using System;
[10845]23using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
24
25namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
[10872]26  public class TransformationToSymbolicTreeMapper : ITransformationMapper<ISymbolicExpressionTreeNode> {
[10846]27    private ITransformation transformation;
28    private string column;
29
[10845]30    #region ITransformationMapper<ISymbolicExpressionTree> Members
31
[10872]32    public ISymbolicExpressionTreeNode GenerateModel(ITransformation transformation) {
[10846]33      InitComponents(transformation);
[10845]34
35      if (transformation is LinearTransformation) {
[10846]36        return GenerateModelForLinearTransformation();
[10845]37      } else if (transformation is ExponentialTransformation) {
[10848]38        return GenerateModelForExponentialTransformation();
[10845]39      } else if (transformation is LogarithmicTransformation) {
[10853]40        return GenerateModelForLogarithmicTransformation();
[10845]41      } else if (transformation is PowerTransformation) {
[10853]42        return GenerateModelForPowerTransformation();
[10845]43      } else if (transformation is ReciprocalTransformation) {
[10853]44        return GenerateModelForReciprocalTransformation();
[10845]45      } else if (transformation is ShiftStandardDistributionTransformation) {
[10853]46        return GenerateModelForShiftStandardDistributionTransformation();
[10940]47      } else if (transformation is CopyColumnTransformation) {
[10943]48        return GenerateTreeNodeForCopyColumnTransformation();
[10845]49      }
[10846]50      throw new NotImplementedException();
[10845]51    }
52
[10872]53    public ISymbolicExpressionTreeNode GenerateInverseModel(ITransformation transformation) {
[10846]54      InitComponents(transformation);
[10845]55
56      if (transformation is LinearTransformation) {
[10848]57        return GenerateInverseModelForLinearTransformation();
[10845]58      } else if (transformation is ExponentialTransformation) {
[10848]59        return GenerateInverseModelForExponentialTransformation();
[10845]60      } else if (transformation is LogarithmicTransformation) {
[10853]61        return GenerateInverseModelForLogarithmicTransformation();
[10845]62      } else if (transformation is PowerTransformation) {
[10853]63        return GenerateInverseModelForPowerTransformation();
[10845]64      } else if (transformation is ReciprocalTransformation) {
[10853]65        return GenerateInverseModelForReciprocalTransformation();
[10845]66      } else if (transformation is ShiftStandardDistributionTransformation) {
[10866]67        GenerateInverseModelForShiftStandardDistributionTransformation();
[10943]68      } else if (transformation is CopyColumnTransformation) {
69        return GenerateTreeNodeForCopyColumnTransformation();
[10845]70      }
71
[10846]72      throw new NotImplementedException();
[10845]73    }
74
75    #endregion
76
[10853]77    // helper
78
[10872]79    private ISymbolicExpressionTreeNode GenerateModelForLinearTransformation() {
[10846]80      var linearTransformation = (LinearTransformation)transformation;
81      var kValue = linearTransformation.Multiplier;
82      var dValue = linearTransformation.Addend;
83
84      // k * x
85      var multiplicationNode = new Multiplication().CreateTreeNode();
[10866]86      var kNode = CreateConstantTreeNode("k", kValue);
87      var xNode = CreateVariableTreeNode(column, "x");
[10846]88      multiplicationNode.AddSubtree(kNode);
89      multiplicationNode.AddSubtree(xNode);
90
91      // ( k * x ) + d
92      var additionNode = new Addition().CreateTreeNode();
[10866]93      var dNode = CreateConstantTreeNode("d", dValue);
[10846]94      additionNode.AddSubtree(multiplicationNode);
95      additionNode.AddSubtree(dNode);
96
[10872]97      return additionNode;
[10846]98    }
99
[10872]100    private ISymbolicExpressionTreeNode GenerateInverseModelForLinearTransformation() {
[10848]101      var linearTransformation = (LinearTransformation)transformation;
102      var kValue = linearTransformation.Multiplier;
103      var dValue = linearTransformation.Addend;
104
105      // x - d
106      var substractionNode = new Subtraction().CreateTreeNode();
[10866]107      var dNode = CreateConstantTreeNode("d", dValue);
108      var xNode = CreateVariableTreeNode(column, "x");
[10848]109      substractionNode.AddSubtree(xNode);
110      substractionNode.AddSubtree(dNode);
111
112      // ( x - d ) / k
113      var divisionNode = new Division().CreateTreeNode();
[10866]114      var kNode = CreateConstantTreeNode("k", kValue);
[10848]115      divisionNode.AddSubtree(substractionNode);
116      divisionNode.AddSubtree(kNode);
117
[10872]118      return divisionNode;
[10848]119    }
120
121
[10872]122    private ISymbolicExpressionTreeNode GenerateModelForExponentialTransformation() {
[10848]123      var exponentialTransformation = (ExponentialTransformation)transformation;
124      var bValue = exponentialTransformation.Base;
125
[10853]126      return GenTreePow_b_x(bValue);
127    }
128
[10872]129    private ISymbolicExpressionTreeNode GenerateInverseModelForExponentialTransformation() {
[10853]130      var exponentialTransformation = (ExponentialTransformation)transformation;
131      var bValue = exponentialTransformation.Base;
132
133      return GenTreeLog_x_b(bValue);
134    }
135
136
[10872]137    private ISymbolicExpressionTreeNode GenerateModelForLogarithmicTransformation() {
[10853]138      var logarithmicTransformation = (LogarithmicTransformation)transformation;
139      var bValue = logarithmicTransformation.Base;
140
141      return GenTreeLog_x_b(bValue);
142    }
143
[10872]144    private ISymbolicExpressionTreeNode GenerateInverseModelForLogarithmicTransformation() {
[10853]145      var logarithmicTransformation = (LogarithmicTransformation)transformation;
146      var bValue = logarithmicTransformation.Base;
147
148      return GenTreePow_b_x(bValue);
149    }
150
151
[10872]152    private ISymbolicExpressionTreeNode GenerateModelForPowerTransformation() {
[10853]153      var powerTransformation = (PowerTransformation)transformation;
154      var expValue = powerTransformation.Exponent;
155
156      // x ^ exp
[10848]157      var powerNode = new Power().CreateTreeNode();
[10866]158      var xNode = CreateVariableTreeNode(column, "x");
159      var expNode = CreateConstantTreeNode("exp", expValue);
[10848]160      powerNode.AddSubtree(xNode);
[10853]161      powerNode.AddSubtree(expNode);
[10848]162
[10872]163      return powerNode;
[10848]164    }
165
[10872]166    private ISymbolicExpressionTreeNode GenerateInverseModelForPowerTransformation() {
[10853]167      var powerTransformation = (PowerTransformation)transformation;
168      var expValue = powerTransformation.Exponent;
[10848]169
[10853]170      // rt(x, b)
171      var rootNode = new Root().CreateTreeNode();
[10866]172      var xNode = CreateVariableTreeNode(column, "x");
173      var bNode = CreateConstantTreeNode("b", expValue);
[10853]174      rootNode.AddSubtree(xNode);
175      rootNode.AddSubtree(bNode);
176
[10872]177      return rootNode;
[10853]178    }
179
180
[10872]181    private ISymbolicExpressionTreeNode GenerateModelForReciprocalTransformation() {
[10853]182      return GenTreeDiv_1_x();
183    }
184
[10872]185    private ISymbolicExpressionTreeNode GenerateInverseModelForReciprocalTransformation() {
[10853]186      return GenTreeDiv_1_x();
187    }
188
[10872]189
190    private ISymbolicExpressionTreeNode GenerateModelForShiftStandardDistributionTransformation() {
[10853]191      var shiftStandardDistributionTransformation = (ShiftStandardDistributionTransformation)transformation;
192      var m_orgValue = shiftStandardDistributionTransformation.OriginalMean;
193      var s_orgValue = shiftStandardDistributionTransformation.OriginalStandardDeviation;
194      var m_tarValue = shiftStandardDistributionTransformation.Mean;
195      var s_tarValue = shiftStandardDistributionTransformation.StandardDeviation;
196
[10866]197      return GenTreeShiftStdDist(column, m_orgValue, s_orgValue, m_tarValue, s_tarValue);
198    }
[10853]199
[10872]200    private ISymbolicExpressionTreeNode GenerateInverseModelForShiftStandardDistributionTransformation() {
[10866]201      var shiftStandardDistributionTransformation = (ShiftStandardDistributionTransformation)transformation;
202      var m_orgValue = shiftStandardDistributionTransformation.OriginalMean;
203      var s_orgValue = shiftStandardDistributionTransformation.OriginalStandardDeviation;
204      var m_tarValue = shiftStandardDistributionTransformation.Mean;
205      var s_tarValue = shiftStandardDistributionTransformation.StandardDeviation;
[10853]206
[10866]207      return GenTreeShiftStdDist(column, m_tarValue, s_tarValue, m_orgValue, s_orgValue);
[10853]208    }
209
[10943]210    private ISymbolicExpressionTreeNode GenerateTreeNodeForCopyColumnTransformation() {
211      var copyColumnTransformation = (CopyColumnTransformation)transformation;
212      var copiedColumnName = copyColumnTransformation.CopiedColumnName;
213
214      return CreateVariableTreeNode(copiedColumnName, copiedColumnName + "(original)");
215    }
216
[10853]217    // helper's helper:
218
[10872]219    private ISymbolicExpressionTreeNode GenTreeLog_x_b(double b) {
[10848]220      // log(x, b)
221      var logNode = new Logarithm().CreateTreeNode();
[10866]222      var bNode = CreateConstantTreeNode("b", b);
223      var xNode = CreateVariableTreeNode(column, "x");
[10848]224      logNode.AddSubtree(xNode);
225      logNode.AddSubtree(bNode);
226
[10872]227      return logNode;
[10848]228    }
229
[10872]230    private ISymbolicExpressionTreeNode GenTreePow_b_x(double b) {
[10853]231      // b ^ x
232      var powerNode = new Power().CreateTreeNode();
[10866]233      var bNode = CreateConstantTreeNode("b", b);
234      var xNode = CreateVariableTreeNode(column, "x");
[10853]235      powerNode.AddSubtree(bNode);
236      powerNode.AddSubtree(xNode);
237
[10872]238      return powerNode;
[10853]239    }
240
[10872]241    private ISymbolicExpressionTreeNode GenTreeDiv_1_x() {
[10853]242      // 1 / x
243      var divNode = new Division().CreateTreeNode();
[10866]244      var oneNode = CreateConstantTreeNode("1", 1.0);
245      var xNode = CreateVariableTreeNode(column, "x");
[10853]246      divNode.AddSubtree(oneNode);
247      divNode.AddSubtree(xNode);
248
[10872]249      return divNode;
[10853]250    }
[10872]251
252    private ISymbolicExpressionTreeNode GenTreeShiftStdDist(string variable, double m_org, double s_org, double m_tar, double s_tar) {
[10866]253      // x - m_org
254      var substractionNode = new Subtraction().CreateTreeNode();
255      var xNode = CreateVariableTreeNode(variable, "x");
256      var m_orgNode = CreateConstantTreeNode("m_org", m_org);
257      substractionNode.AddSubtree(xNode);
258      substractionNode.AddSubtree(m_orgNode);
[10853]259
[10866]260      // (x - m_org) / s_org
261      var divisionNode = new Division().CreateTreeNode();
262      var s_orgNode = CreateConstantTreeNode("s_org", s_org);
263      divisionNode.AddSubtree(substractionNode);
264      divisionNode.AddSubtree(s_orgNode);
[10853]265
[10866]266      // ((x - m_org) / s_org ) * s_tar
267      var multiplicationNode = new Multiplication().CreateTreeNode();
268      var s_tarNode = CreateConstantTreeNode("s_tar", s_tar);
269      multiplicationNode.AddSubtree(divisionNode);
270      multiplicationNode.AddSubtree(s_tarNode);
271
272      // ((x - m_org) / s_org ) * s_tar + m_tar
273      var additionNode = new Addition().CreateTreeNode();
274      var m_tarNode = CreateConstantTreeNode("m_tar", m_tar);
275      additionNode.AddSubtree(multiplicationNode);
276      additionNode.AddSubtree(m_tarNode);
277
[10872]278      return additionNode;
[10866]279    }
280
281    private ConstantTreeNode CreateConstantTreeNode(string description, double value) {
[10869]282      return new ConstantTreeNode(new Constant()) { Value = value };
[10866]283    }
[10872]284
[10878]285    private VariableTreeNode CreateVariableTreeNode(string name, string description) {
286      return new VariableTreeNode(new Variable(name, description)) { VariableName = name, Weight = 1.0 };
[10866]287    }
288
[10846]289    private void InitComponents(ITransformation transformation) {
290      this.transformation = transformation;
291      column = transformation.Column;
292    }
[10845]293  }
294}
Note: See TracBrowser for help on using the repository browser.