Free cookie consent management tool by TermsFeed Policy Generator

source: branches/SuccessProgressAnalysis/HeuristicLab.Algorithms.DataAnalysis/3.3/SupportVectorMachine.cs @ 5370

Last change on this file since 5370 was 4722, checked in by swagner, 14 years ago

Merged cloning refactoring branch back into trunk (#922)

File size: 10.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Optimization;
27using HeuristicLab.Parameters;
28using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
29using HeuristicLab.Problems.DataAnalysis;
30using HeuristicLab.Problems.DataAnalysis.Evaluators;
31using HeuristicLab.Problems.DataAnalysis.Regression.SupportVectorRegression;
32using HeuristicLab.Problems.DataAnalysis.SupportVectorMachine;
33
34namespace HeuristicLab.Algorithms.DataAnalysis {
35  /// <summary>
36  /// A support vector machine.
37  /// </summary>
38  [Item("Support Vector Machine", "Support vector machine data analysis algorithm.")]
39  [Creatable("Data Analysis")]
40  [StorableClass]
41  public sealed class SupportVectorMachine : EngineAlgorithm, IStorableContent {
42    private const string TrainingSamplesStartParameterName = "Training start";
43    private const string TrainingSamplesEndParameterName = "Training end";
44    private const string DataAnalysisProblemDataParameterName = "DataAnalysisProblemData";
45    private const string SvmTypeParameterName = "SvmType";
46    private const string KernelTypeParameterName = "KernelType";
47    private const string CostParameterName = "Cost";
48    private const string NuParameterName = "Nu";
49    private const string GammaParameterName = "Gamma";
50    private const string EpsilonParameterName = "Epsilon";
51    private const string ModelParameterName = "SupportVectorMachineModel";
52
53    public string Filename { get; set; }
54
55    #region Problem Properties
56    public override Type ProblemType {
57      get { return typeof(DataAnalysisProblem); }
58    }
59    public new DataAnalysisProblem Problem {
60      get { return (DataAnalysisProblem)base.Problem; }
61      set { base.Problem = value; }
62    }
63    #endregion
64
65    #region parameter properties
66    public IValueParameter<IntValue> TrainingSamplesStartParameter {
67      get { return (IValueParameter<IntValue>)Parameters[TrainingSamplesStartParameterName]; }
68    }
69    public IValueParameter<IntValue> TrainingSamplesEndParameter {
70      get { return (IValueParameter<IntValue>)Parameters[TrainingSamplesEndParameterName]; }
71    }
72    public IValueParameter<StringValue> SvmTypeParameter {
73      get { return (IValueParameter<StringValue>)Parameters[SvmTypeParameterName]; }
74    }
75    public IValueParameter<StringValue> KernelTypeParameter {
76      get { return (IValueParameter<StringValue>)Parameters[KernelTypeParameterName]; }
77    }
78    public IValueParameter<DoubleValue> NuParameter {
79      get { return (IValueParameter<DoubleValue>)Parameters[NuParameterName]; }
80    }
81    public IValueParameter<DoubleValue> CostParameter {
82      get { return (IValueParameter<DoubleValue>)Parameters[CostParameterName]; }
83    }
84    public IValueParameter<DoubleValue> GammaParameter {
85      get { return (IValueParameter<DoubleValue>)Parameters[GammaParameterName]; }
86    }
87    public IValueParameter<DoubleValue> EpsilonParameter {
88      get { return (IValueParameter<DoubleValue>)Parameters[EpsilonParameterName]; }
89    }
90    #endregion
91
92    [Storable]
93    private SupportVectorMachineModelCreator solutionCreator;
94    [Storable]
95    private SupportVectorMachineModelEvaluator evaluator;
96    [Storable]
97    private SimpleMSEEvaluator mseEvaluator;
98    [Storable]
99    private BestSupportVectorRegressionSolutionAnalyzer analyzer;
100    public SupportVectorMachine()
101      : base() {
102      #region svm types
103      StringValue cSvcType = new StringValue("C_SVC").AsReadOnly();
104      StringValue nuSvcType = new StringValue("NU_SVC").AsReadOnly();
105      StringValue eSvrType = new StringValue("EPSILON_SVR").AsReadOnly();
106      StringValue nuSvrType = new StringValue("NU_SVR").AsReadOnly();
107      ItemSet<StringValue> allowedSvmTypes = new ItemSet<StringValue>();
108      allowedSvmTypes.Add(cSvcType);
109      allowedSvmTypes.Add(nuSvcType);
110      allowedSvmTypes.Add(eSvrType);
111      allowedSvmTypes.Add(nuSvrType);
112      #endregion
113      #region kernel types
114      StringValue rbfKernelType = new StringValue("RBF").AsReadOnly();
115      StringValue linearKernelType = new StringValue("LINEAR").AsReadOnly();
116      StringValue polynomialKernelType = new StringValue("POLY").AsReadOnly();
117      StringValue sigmoidKernelType = new StringValue("SIGMOID").AsReadOnly();
118      ItemSet<StringValue> allowedKernelTypes = new ItemSet<StringValue>();
119      allowedKernelTypes.Add(rbfKernelType);
120      allowedKernelTypes.Add(linearKernelType);
121      allowedKernelTypes.Add(polynomialKernelType);
122      allowedKernelTypes.Add(sigmoidKernelType);
123      #endregion
124      Parameters.Add(new ValueParameter<IntValue>(TrainingSamplesStartParameterName, "The first index of the data set partition to use for training."));
125      Parameters.Add(new ValueParameter<IntValue>(TrainingSamplesEndParameterName, "The last index of the data set partition to use for training."));
126      Parameters.Add(new ConstrainedValueParameter<StringValue>(SvmTypeParameterName, "The type of SVM to use.", allowedSvmTypes, nuSvrType));
127      Parameters.Add(new ConstrainedValueParameter<StringValue>(KernelTypeParameterName, "The kernel type to use for the SVM.", allowedKernelTypes, rbfKernelType));
128      Parameters.Add(new ValueParameter<DoubleValue>(NuParameterName, "The value of the nu parameter nu-SVC, one-class SVM and nu-SVR.", new DoubleValue(0.5)));
129      Parameters.Add(new ValueParameter<DoubleValue>(CostParameterName, "The value of the C (cost) parameter of C-SVC, epsilon-SVR and nu-SVR.", new DoubleValue(1.0)));
130      Parameters.Add(new ValueParameter<DoubleValue>(GammaParameterName, "The value of the gamma parameter in the kernel function.", new DoubleValue(1.0)));
131      Parameters.Add(new ValueLookupParameter<DoubleValue>(EpsilonParameterName, "The value of the epsilon parameter (only for epsilon-SVR).", new DoubleValue(1.0)));
132
133      solutionCreator = new SupportVectorMachineModelCreator();
134      evaluator = new SupportVectorMachineModelEvaluator();
135      mseEvaluator = new SimpleMSEEvaluator();
136      analyzer = new BestSupportVectorRegressionSolutionAnalyzer();
137
138      OperatorGraph.InitialOperator = solutionCreator;
139      solutionCreator.Successor = evaluator;
140      evaluator.Successor = mseEvaluator;
141      mseEvaluator.Successor = analyzer;
142
143      Initialize();
144    }
145    [StorableConstructor]
146    private SupportVectorMachine(bool deserializing) : base(deserializing) { }
147    [StorableHook(HookType.AfterDeserialization)]
148    private void AfterDeserialization() {
149      Initialize();
150    }
151
152    private SupportVectorMachine(SupportVectorMachine original, Cloner cloner)
153      : base(original, cloner) {
154      solutionCreator = cloner.Clone(original.solutionCreator);
155      evaluator = cloner.Clone(original.evaluator);
156      mseEvaluator = cloner.Clone(original.mseEvaluator);
157      analyzer = cloner.Clone(original.analyzer);
158      Initialize();
159    }
160    public override IDeepCloneable Clone(Cloner cloner) {
161      return new SupportVectorMachine(this, cloner);
162    }
163
164    public override void Prepare() {
165      if (Problem != null) base.Prepare();
166    }
167
168    protected override void Problem_Reset(object sender, EventArgs e) {
169      UpdateAlgorithmParameters();
170      base.Problem_Reset(sender, e);
171    }
172
173    #region Events
174    protected override void OnProblemChanged() {
175      solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
176      evaluator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
177      analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
178      UpdateAlgorithmParameters();
179      Problem.Reset += new EventHandler(Problem_Reset);
180      base.OnProblemChanged();
181    }
182
183    #endregion
184
185    #region Helpers
186    private void Initialize() {
187      solutionCreator.SvmTypeParameter.ActualName = SvmTypeParameter.Name;
188      solutionCreator.KernelTypeParameter.ActualName = KernelTypeParameter.Name;
189      solutionCreator.CostParameter.ActualName = CostParameter.Name;
190      solutionCreator.GammaParameter.ActualName = GammaParameter.Name;
191      solutionCreator.NuParameter.ActualName = NuParameter.Name;
192      solutionCreator.SamplesStartParameter.ActualName = TrainingSamplesStartParameter.Name;
193      solutionCreator.SamplesEndParameter.ActualName = TrainingSamplesEndParameter.Name;
194
195      evaluator.SamplesStartParameter.ActualName = TrainingSamplesStartParameter.Name;
196      evaluator.SamplesEndParameter.ActualName = TrainingSamplesEndParameter.Name;
197      evaluator.SupportVectorMachineModelParameter.ActualName = solutionCreator.SupportVectorMachineModelParameter.ActualName;
198      evaluator.ValuesParameter.ActualName = "Training values";
199
200      mseEvaluator.ValuesParameter.ActualName = "Training values";
201      mseEvaluator.MeanSquaredErrorParameter.ActualName = "Training MSE";
202
203      analyzer.SupportVectorRegressionModelParameter.ActualName = solutionCreator.SupportVectorMachineModelParameter.ActualName;
204      analyzer.SupportVectorRegressionModelParameter.Depth = 0;
205      analyzer.QualityParameter.ActualName = mseEvaluator.MeanSquaredErrorParameter.ActualName;
206      analyzer.QualityParameter.Depth = 0;
207
208      if (Problem != null) {
209        solutionCreator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
210        evaluator.DataAnalysisProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
211        analyzer.ProblemDataParameter.ActualName = Problem.DataAnalysisProblemDataParameter.Name;
212        Problem.Reset += new EventHandler(Problem_Reset);
213      }
214    }
215
216    private void UpdateAlgorithmParameters() {
217      TrainingSamplesStartParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesStart;
218      TrainingSamplesEndParameter.ActualValue = Problem.DataAnalysisProblemData.TrainingSamplesEnd;
219    }
220    #endregion
221  }
222}
Note: See TracBrowser for help on using the repository browser.