[9353] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[9706] | 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[9353] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 |
|
---|
| 25 | namespace HeuristicLab.Analysis.Statistics {
|
---|
[10019] | 26 | public static class KruskalWallis {
|
---|
[9353] | 27 | /// <summary>
|
---|
| 28 | /// Performs the Kruskal-Wallis test and returns the p-Value.
|
---|
[10017] | 29 | /// (source based on R's kruskal.test(), GNU GPL)
|
---|
[9353] | 30 | /// </summary>
|
---|
| 31 | public static double Test(double[][] data) {
|
---|
| 32 | double[] g;
|
---|
| 33 | double[] x = FlattenArray(data, out g);
|
---|
| 34 | int n = x.Length;
|
---|
| 35 | int parameter = data.Length - 1;
|
---|
| 36 |
|
---|
| 37 | int[] r = Rank(x);
|
---|
| 38 | double[][] ties = CountDuplicates(x);
|
---|
| 39 | double statistic = CalculateStatistic(r, g);
|
---|
| 40 | double tiesCorrection = CalculateTiesCorrection(ties);
|
---|
| 41 | statistic = ((12 * statistic / (n * (n + 1)) - 3 * (n + 1)) /
|
---|
| 42 | (1 - tiesCorrection / (Math.Pow(n, 3) - n)));
|
---|
| 43 |
|
---|
| 44 | return alglib.chisquarecdistribution(parameter, statistic);
|
---|
| 45 | }
|
---|
| 46 |
|
---|
| 47 | private static double CalculateStatistic(int[] r, double[] g) {
|
---|
| 48 | double result = 0.0;
|
---|
| 49 | double lastG = g[0];
|
---|
| 50 | double curSum = 0.0;
|
---|
| 51 | int cnt = 0;
|
---|
| 52 | for (int i = 0; i < r.Length; i++) {
|
---|
| 53 | if (lastG == g[i]) {
|
---|
| 54 | curSum += r[i];
|
---|
| 55 | cnt++;
|
---|
| 56 | } else {
|
---|
| 57 | double sum = Math.Pow(curSum, 2);
|
---|
| 58 | sum /= cnt;
|
---|
| 59 | result += sum;
|
---|
| 60 |
|
---|
| 61 | lastG = g[i];
|
---|
| 62 | curSum = r[i];
|
---|
| 63 | cnt = 1;
|
---|
| 64 | }
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | double lastSum = Math.Pow(curSum, 2);
|
---|
| 68 | lastSum /= cnt;
|
---|
| 69 | result += lastSum;
|
---|
| 70 |
|
---|
| 71 | return result;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | private static double CalculateTiesCorrection(double[][] ties) {
|
---|
| 75 | double sum = 0.0;
|
---|
| 76 | for (int i = 0; i < ties[1].Length; i++) {
|
---|
| 77 | double tic = Math.Pow(ties[1][i], 3) - ties[1][i];
|
---|
| 78 | sum += tic;
|
---|
| 79 | }
|
---|
| 80 | return sum;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | private static double[] FlattenArray(double[][] x, out double[] indizes) {
|
---|
| 84 | int compLenght = 0;
|
---|
| 85 | for (int i = 0; i < x.Length; i++) {
|
---|
| 86 | compLenght += x[i].Length;
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | double[] result = new double[compLenght];
|
---|
| 90 | indizes = new double[compLenght];
|
---|
| 91 |
|
---|
| 92 | int resultPos = 0;
|
---|
| 93 | for (int i = 0; i < x.Length; i++) {
|
---|
| 94 | Array.Copy(x[i], 0, result, resultPos, x[i].Length);
|
---|
| 95 |
|
---|
| 96 | for (int j = resultPos; j < resultPos + x[i].Length; j++) {
|
---|
| 97 | indizes[j] = i;
|
---|
| 98 | }
|
---|
| 99 | resultPos += x[i].Length;
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | return result;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | private static double[][] CountDuplicates(double[] x) {
|
---|
| 106 | List<double> number = new List<double>();
|
---|
| 107 | List<double> cnt = new List<double>();
|
---|
| 108 | double[] sortedX = new double[x.Length];
|
---|
| 109 |
|
---|
| 110 | Array.Copy(x, sortedX, x.Length);
|
---|
| 111 | Array.Sort(sortedX);
|
---|
| 112 |
|
---|
| 113 | double last = x[0];
|
---|
| 114 | number.Add(x[0]);
|
---|
| 115 | cnt.Add(1);
|
---|
| 116 |
|
---|
| 117 | for (int i = 1; i < x.Length; i++) {
|
---|
| 118 | if (last != x[i]) {
|
---|
| 119 | number.Add(x[i]);
|
---|
| 120 | last = x[i];
|
---|
| 121 | cnt.Add(1);
|
---|
| 122 | } else {
|
---|
| 123 | cnt[cnt.Count - 1] += 1;
|
---|
| 124 | }
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | double[][] result = new double[2][];
|
---|
| 128 | result[0] = number.ToArray();
|
---|
| 129 | result[1] = cnt.ToArray();
|
---|
| 130 |
|
---|
| 131 | return result;
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | private static int[] Rank(double[] x) {
|
---|
| 135 | double[] keys = new double[x.Length];
|
---|
| 136 | int[] items = new int[x.Length];
|
---|
| 137 | int[] ranks = new int[x.Length];
|
---|
| 138 |
|
---|
| 139 | Array.Copy(x, keys, x.Length);
|
---|
| 140 | for (int i = 0; i < x.Length; i++) items[i] = i;
|
---|
| 141 |
|
---|
| 142 | Array.Sort(keys, items);
|
---|
| 143 |
|
---|
| 144 | for (int i = 0; i < x.Length; i++) {
|
---|
| 145 | ranks[items[i]] = i + 1;
|
---|
| 146 | }
|
---|
| 147 | return ranks;
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | }
|
---|