[14278] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 | using HeuristicLab.Data.MoveVectorData;
|
---|
| 27 | using HeuristicLab.Encodings.MoveVectorEncoding;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Encodings.BinaryVectorEncoding {
|
---|
| 30 | /// <summary>
|
---|
| 31 | /// Uniform crossover for move vectors.
|
---|
| 32 | /// </summary>
|
---|
| 33 | /// <remarks>
|
---|
| 34 | /// It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.
|
---|
| 35 | /// </remarks>
|
---|
| 36 | [Item("UniformCrossover", "Uniform crossover for move vectors. It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.")]
|
---|
| 37 | [StorableClass]
|
---|
| 38 | public sealed class UniformCrossover : MoveVectorCrossover
|
---|
| 39 | {
|
---|
| 40 |
|
---|
| 41 | [StorableConstructor]
|
---|
| 42 | private UniformCrossover(bool deserializing) : base(deserializing) { }
|
---|
| 43 | private UniformCrossover(UniformCrossover original, Cloner cloner) : base(original, cloner) { }
|
---|
| 44 | public UniformCrossover() : base() { }
|
---|
| 45 |
|
---|
| 46 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 47 | return new UniformCrossover(this, cloner);
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | /// <summary>
|
---|
| 51 | /// Performs a uniform crossover between two binary vectors.
|
---|
| 52 | /// </summary>
|
---|
| 53 | /// <param name="random">A random number generator.</param>
|
---|
| 54 | /// <param name="parent1">The first parent for crossover.</param>
|
---|
| 55 | /// <param name="parent2">The second parent for crossover.</param>
|
---|
| 56 | /// <returns>The newly created binary vector, resulting from the uniform crossover.</returns>
|
---|
| 57 | public static MoveVector Apply(IRandom random, MoveVector parent1, MoveVector parent2) {
|
---|
| 58 | if (parent1.Length != parent2.Length)
|
---|
| 59 | throw new ArgumentException("UniformCrossover: The parents are of different length.");
|
---|
| 60 |
|
---|
| 61 | int length = parent1.Length;
|
---|
| 62 | MoveVector result = new MoveVector(length, parent1.MoveTypes);
|
---|
| 63 |
|
---|
| 64 | for (int i = 0; i < length; i++) {
|
---|
| 65 | if (random.NextDouble() < 0.5)
|
---|
| 66 | result[i] = parent1[i];
|
---|
| 67 | else
|
---|
| 68 | result[i] = parent2[i];
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | return result;
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | protected override MoveVector Cross(IRandom random, ItemArray<MoveVector> parents) {
|
---|
| 75 | if (parents.Length != 2) throw new ArgumentException("ERROR in UniformCrossover: The number of parents is not equal to 2");
|
---|
| 76 |
|
---|
| 77 | return Apply(random, parents[0], parents[1]);
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
| 80 | }
|
---|