1 | #region License Information |
---|
2 | /* HeuristicLab |
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL) |
---|
4 | * |
---|
5 | * This file is part of HeuristicLab. |
---|
6 | * |
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify |
---|
8 | * it under the terms of the GNU General Public License as published by |
---|
9 | * the Free Software Foundation, either version 3 of the License, or |
---|
10 | * (at your option) any later version. |
---|
11 | * |
---|
12 | * HeuristicLab is distributed in the hope that it will be useful, |
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
15 | * GNU General Public License for more details. |
---|
16 | * |
---|
17 | * You should have received a copy of the GNU General Public License |
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. |
---|
19 | */ |
---|
20 | #endregion |
---|
21 | |
---|
22 | using System; |
---|
23 | using System.Collections.Generic; |
---|
24 | using System.Linq; |
---|
25 | using HeuristicLab.Core; |
---|
26 | |
---|
27 | namespace HeuristicLab.Random { |
---|
28 | public static class RandomEnumerable { |
---|
29 | public static IEnumerable<int> SampleRandomNumbers(int maxElement, int count) { |
---|
30 | return SampleRandomNumbers(Environment.TickCount, 0, maxElement, count); |
---|
31 | } |
---|
32 | |
---|
33 | public static IEnumerable<int> SampleRandomNumbers(int start, int end, int count) { |
---|
34 | return SampleRandomNumbers(Environment.TickCount, start, end, count); |
---|
35 | } |
---|
36 | |
---|
37 | //algorithm taken from progamming pearls page 127 |
---|
38 | //IMPORTANT because IEnumerables with yield are used the seed must be specified to return always |
---|
39 | //the same sequence of numbers without caching the values. |
---|
40 | public static IEnumerable<int> SampleRandomNumbers(int seed, int start, int end, int count) { |
---|
41 | int remaining = end - start; |
---|
42 | var mt = new FastRandom(seed); |
---|
43 | for (int i = start; i < end && count > 0; i++) { |
---|
44 | double probability = mt.NextDouble(); |
---|
45 | if (probability < ((double)count) / remaining) { |
---|
46 | count--; |
---|
47 | yield return i; |
---|
48 | } |
---|
49 | remaining--; |
---|
50 | } |
---|
51 | } |
---|
52 | |
---|
53 | /// <summary> |
---|
54 | /// Chooses one elements from a sequence giving each element an equal chance. |
---|
55 | /// </summary> |
---|
56 | /// <remarks> |
---|
57 | /// Runtime complexity is O(1) for sequences that are of type <see cref="IList{T}"/> and |
---|
58 | /// O(N) for all other. |
---|
59 | /// </remarks> |
---|
60 | /// <exception cref="ArgumentException">If the sequence is empty.</exception> |
---|
61 | /// <typeparam name="T">The type of the items to be selected.</typeparam> |
---|
62 | /// <param name="source">The sequence of elements.</param> |
---|
63 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> |
---|
64 | /// <param name="count">The number of items to be selected.</param> |
---|
65 | /// <returns>An element that has been chosen randomly from the sequence.</returns> |
---|
66 | public static T SampleRandom<T>(this IEnumerable<T> source, IRandom random) { |
---|
67 | if (!source.Any()) throw new ArgumentException("sequence is empty.", "source"); |
---|
68 | return source.SampleRandom(random, 1).First(); |
---|
69 | } |
---|
70 | |
---|
71 | /// <summary> |
---|
72 | /// Chooses <paramref name="count"/> elements from a sequence with repetition with equal chances for each element. |
---|
73 | /// </summary> |
---|
74 | /// <remarks> |
---|
75 | /// Runtime complexity is O(count) for sequences that are <see cref="IList{T}"/> and |
---|
76 | /// O(N * count) for all other. No exception is thrown if the sequence is empty. |
---|
77 | /// |
---|
78 | /// The method is online. |
---|
79 | /// </remarks> |
---|
80 | /// <typeparam name="T">The type of the items to be selected.</typeparam> |
---|
81 | /// <param name="source">The sequence of elements.</param> |
---|
82 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> |
---|
83 | /// <param name="count">The number of items to be selected.</param> |
---|
84 | /// <returns>A sequence of elements that have been chosen randomly.</returns> |
---|
85 | public static IEnumerable<T> SampleRandom<T>(this IEnumerable<T> source, IRandom random, int count) { |
---|
86 | var listSource = source as IList<T>; |
---|
87 | if (listSource != null) { |
---|
88 | while (count > 0) { |
---|
89 | yield return listSource[random.Next(listSource.Count)]; |
---|
90 | count--; |
---|
91 | } |
---|
92 | } else { |
---|
93 | while (count > 0) { |
---|
94 | var enumerator = source.GetEnumerator(); |
---|
95 | enumerator.MoveNext(); |
---|
96 | T selectedItem = enumerator.Current; |
---|
97 | int counter = 1; |
---|
98 | while (enumerator.MoveNext()) { |
---|
99 | counter++; |
---|
100 | if (counter * random.NextDouble() < 1.0) |
---|
101 | selectedItem = enumerator.Current; |
---|
102 | } |
---|
103 | yield return selectedItem; |
---|
104 | count--; |
---|
105 | } |
---|
106 | } |
---|
107 | } |
---|
108 | |
---|
109 | /// <summary> |
---|
110 | /// Chooses <paramref name="count"/> elements from a sequence without repetition with equal chances for each element. |
---|
111 | /// The items are returned in the same order as they appear in the sequence. |
---|
112 | /// </summary> |
---|
113 | /// <remarks> |
---|
114 | /// Runtime complexity is O(N) for all sequences. |
---|
115 | /// No exception is thrown if the sequence contains less items than there are to be selected. |
---|
116 | /// |
---|
117 | /// The method is online. |
---|
118 | /// </remarks> |
---|
119 | /// <typeparam name="T">The type of the items to be selected.</typeparam> |
---|
120 | /// <param name="source">The sequence of elements.</param> |
---|
121 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> |
---|
122 | /// <param name="count">The number of items to be selected.</param> |
---|
123 | /// <param name="sourceCount">Optional parameter specifying the number of elements in the source enumerations</param> |
---|
124 | /// <returns>A sequence of elements that have been chosen randomly.</returns> |
---|
125 | public static IEnumerable<T> SampleRandomWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count, int sourceCount = -1) { |
---|
126 | if (sourceCount == -1) sourceCount = source.Count(); |
---|
127 | int remaining = sourceCount; |
---|
128 | foreach (var item in source) { |
---|
129 | if (random.NextDouble() * remaining < count) { |
---|
130 | count--; |
---|
131 | yield return item; |
---|
132 | if (count <= 0) break; |
---|
133 | } |
---|
134 | remaining--; |
---|
135 | } |
---|
136 | } |
---|
137 | |
---|
138 | /// <summary> |
---|
139 | /// Chooses elements out of a sequence with repetition. The chance that an item is selected is proportional or inverse-proportional |
---|
140 | /// to the <paramref name="weights"/>. |
---|
141 | /// </summary> |
---|
142 | /// <remarks> |
---|
143 | /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0, |
---|
144 | /// otherwise an InvalidOperationException is thrown. |
---|
145 | /// |
---|
146 | /// The method internally holds two arrays: One that is the sequence itself and another one for the values. |
---|
147 | /// </remarks> |
---|
148 | /// <typeparam name="T">The type of the items to be selected.</typeparam> |
---|
149 | /// <param name="source">The sequence of elements.</param> |
---|
150 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> |
---|
151 | /// <param name="count">The number of items to be selected.</param> |
---|
152 | /// <param name="weights">The weight values for the items.</param> |
---|
153 | /// <param name="windowing">Whether to scale the proportional values or not.</param> |
---|
154 | /// <param name="inverseProportional">Determines whether to choose proportionally (false) or inverse-proportionally (true).</param> |
---|
155 | /// <returns>A sequence of selected items. The sequence might contain the same item more than once.</returns> |
---|
156 | public static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) { |
---|
157 | return source.SampleProportional(random, weights, windowing, inverseProportional).Take(count); |
---|
158 | } |
---|
159 | |
---|
160 | /// <summary> |
---|
161 | /// Same as <seealso cref="SampleProportional<T>"/>, but chooses an item exactly once. |
---|
162 | /// </summary> |
---|
163 | /// <remarks> |
---|
164 | /// In case both <paramref name="inverseProportional"/> and <paramref name="windowing"/> are false values must be > 0, |
---|
165 | /// otherwise an InvalidOperationException is thrown. |
---|
166 | /// |
---|
167 | /// The method internally holds two arrays: One that is the sequence itself and another one for the values. |
---|
168 | /// |
---|
169 | /// The method does not check if the number of elements in source and weights are the same. |
---|
170 | /// </remarks> |
---|
171 | /// <typeparam name="T">The type of the items to be selected.</typeparam> |
---|
172 | /// <param name="source">The sequence of elements.</param> |
---|
173 | /// <param name="random">The random number generator to use, its NextDouble() method must produce values in the range [0;1)</param> |
---|
174 | /// <param name="count">The number of items to be selected.</param> |
---|
175 | /// <param name="weights">The weight values for the items.</param> |
---|
176 | /// <param name="windowing">Whether to scale the proportional values or not.</param> |
---|
177 | /// <param name="inverseProportional">Determines whether to choose proportionally (true) or inverse-proportionally (false).</param> |
---|
178 | /// <returns>A sequence of selected items. Might actually be shorter than <paramref name="count"/> elements if source has less than <paramref name="count"/> elements.</returns> |
---|
179 | public static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, int count, IEnumerable<double> weights, bool windowing = true, bool inverseProportional = false) { |
---|
180 | return source.SampleProportionalWithoutRepetition(random, weights, windowing, inverseProportional).Take(count); |
---|
181 | } |
---|
182 | #region Proportional Helpers |
---|
183 | private static IEnumerable<T> SampleProportional<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) { |
---|
184 | var sourceArray = source.ToArray(); |
---|
185 | var valueArray = PrepareProportional(sourceArray, weights, windowing, inverseProportional); |
---|
186 | double total = valueArray.Sum(); |
---|
187 | |
---|
188 | while (true) { |
---|
189 | int index = 0; |
---|
190 | double ball = valueArray[index], sum = random.NextDouble() * total; |
---|
191 | while (ball < sum) |
---|
192 | ball += valueArray[++index]; |
---|
193 | yield return sourceArray[index]; |
---|
194 | } |
---|
195 | } |
---|
196 | private static IEnumerable<T> SampleProportionalWithoutRepetition<T>(this IEnumerable<T> source, IRandom random, IEnumerable<double> weights, bool windowing, bool inverseProportional) { |
---|
197 | var valueArray = PrepareProportional(source.ToArray(), weights, windowing, inverseProportional); |
---|
198 | var list = new LinkedList<Tuple<T, double>>(source.Zip(valueArray, Tuple.Create)); |
---|
199 | double total = valueArray.Sum(); |
---|
200 | |
---|
201 | while (list.Count > 0) { |
---|
202 | var cur = list.First; |
---|
203 | double ball = cur.Value.Item2, sum = random.NextDouble() * total; // assert: sum < total. When there is only one item remaining: sum < ball |
---|
204 | while (ball < sum) { |
---|
205 | cur = cur.Next; |
---|
206 | ball += cur.Value.Item2; |
---|
207 | } |
---|
208 | yield return cur.Value.Item1; |
---|
209 | list.Remove(cur); |
---|
210 | total -= cur.Value.Item2; |
---|
211 | } |
---|
212 | } |
---|
213 | |
---|
214 | private static double[] PrepareProportional<T>(IList<T> sourceArray, IEnumerable<double> weights, bool windowing, bool inverseProportional) { |
---|
215 | double maxValue = double.MinValue, minValue = double.MaxValue; |
---|
216 | double[] valueArray = new double[sourceArray.Count]; |
---|
217 | |
---|
218 | var weightsEnum = weights.GetEnumerator(); |
---|
219 | for (int i = 0; i < sourceArray.Count && weightsEnum.MoveNext(); i++) { |
---|
220 | valueArray[i] = weightsEnum.Current; |
---|
221 | if (valueArray[i] > maxValue) maxValue = valueArray[i]; |
---|
222 | if (valueArray[i] < minValue) minValue = valueArray[i]; |
---|
223 | } |
---|
224 | if (minValue == maxValue) { // all values are equal |
---|
225 | for (int i = 0; i < sourceArray.Count; i++) { |
---|
226 | valueArray[i] = 1.0; |
---|
227 | } |
---|
228 | } else { |
---|
229 | if (windowing) { |
---|
230 | if (inverseProportional) InverseProportionalScale(valueArray, maxValue); |
---|
231 | else ProportionalScale(valueArray, minValue); |
---|
232 | } else { |
---|
233 | if (minValue < 0.0) throw new InvalidOperationException("Proportional selection without windowing does not work with values < 0."); |
---|
234 | if (inverseProportional) InverseProportionalScale(valueArray, 2 * maxValue); |
---|
235 | } |
---|
236 | } |
---|
237 | return valueArray; |
---|
238 | } |
---|
239 | private static void ProportionalScale(double[] values, double minValue) { |
---|
240 | for (int i = 0; i < values.Length; i++) { |
---|
241 | values[i] = values[i] - minValue; |
---|
242 | } |
---|
243 | } |
---|
244 | private static void InverseProportionalScale(double[] values, double maxValue) { |
---|
245 | for (int i = 0; i < values.Length; i++) { |
---|
246 | values[i] = maxValue - values[i]; |
---|
247 | } |
---|
248 | } |
---|
249 | #endregion |
---|
250 | |
---|
251 | /// <summary> |
---|
252 | /// Shuffles an enumerable and returns a new enumerable according to the Fisher-Yates shuffle. |
---|
253 | /// </summary> |
---|
254 | /// <remarks> |
---|
255 | /// Note that the source enumerable is transformed into an array. |
---|
256 | /// |
---|
257 | /// The implementation is described in http://stackoverflow.com/questions/1287567/c-is-using-random-and-orderby-a-good-shuffle-algorithm. |
---|
258 | /// </remarks> |
---|
259 | /// <typeparam name="T">The type of the items that are to be shuffled.</typeparam> |
---|
260 | /// <param name="source">The enumerable that contains the items.</param> |
---|
261 | /// <param name="random">The random number generator, its Next(n) method must deliver uniformly distributed random numbers in the range [0;n).</param> |
---|
262 | /// <returns>An enumerable with the elements shuffled.</returns> |
---|
263 | public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, IRandom random) { |
---|
264 | T[] elements = source.ToArray(); |
---|
265 | for (int i = elements.Length - 1; i > 0; i--) { |
---|
266 | // Swap element "i" with a random earlier element (including itself) |
---|
267 | int swapIndex = random.Next(i + 1); |
---|
268 | yield return elements[swapIndex]; |
---|
269 | elements[swapIndex] = elements[i]; |
---|
270 | // we don't actually perform the swap, we can forget about the |
---|
271 | // swapped element because we already returned it. |
---|
272 | } |
---|
273 | yield return elements[0]; |
---|
274 | } |
---|
275 | } |
---|
276 | } |
---|
277 | |
---|