[9162] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.SlidingWindow {
|
---|
| 32 | [StorableClass]
|
---|
| 33 | [Item("Sliding Window Visualizer", "Visualizes the actual sliding window position.")]
|
---|
| 34 | public sealed class SlidingWindowVisualizer : SymbolicDataAnalysisAnalyzer {
|
---|
| 35 | private const string ProblemDataParameterName = "ProblemData";
|
---|
| 36 | private const string FitnessCalculationPartitionParameterName = "FitnessCalculationPartition";
|
---|
| 37 |
|
---|
| 38 | private const string SlidingWindowResultName = "Sliding Window";
|
---|
| 39 | private const string SlidingWindowDataResultName = "Sliding Window Data";
|
---|
| 40 | private const string BestTrainingSolutionResultName = "Best training solution";
|
---|
| 41 |
|
---|
| 42 | #region parameter properties
|
---|
| 43 | public IValueLookupParameter<IDataAnalysisProblemData> ProblemDataParameter {
|
---|
| 44 | get { return (IValueLookupParameter<IDataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
| 45 | }
|
---|
| 46 | public ILookupParameter<IntRange> FitnessCalculationPartitionParameter {
|
---|
| 47 | get { return (ILookupParameter<IntRange>)Parameters[FitnessCalculationPartitionParameterName]; }
|
---|
| 48 | }
|
---|
| 49 | #endregion
|
---|
| 50 |
|
---|
| 51 | [StorableConstructor]
|
---|
| 52 | private SlidingWindowVisualizer(bool deserializing) : base(deserializing) { }
|
---|
| 53 | private SlidingWindowVisualizer(SlidingWindowVisualizer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 54 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 55 | return new SlidingWindowVisualizer(this, cloner);
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | public SlidingWindowVisualizer()
|
---|
| 59 | : base() {
|
---|
| 60 | Parameters.Add(new ValueLookupParameter<IDataAnalysisProblemData>(ProblemDataParameterName, "The problem data on which the symbolic data analysis solution should be evaluated."));
|
---|
| 61 | Parameters.Add(new LookupParameter<IntRange>(FitnessCalculationPartitionParameterName, ""));
|
---|
| 62 | ProblemDataParameter.Hidden = true;
|
---|
| 63 | }
|
---|
| 64 |
|
---|
| 65 | public override IOperation Apply() {
|
---|
| 66 | //create and update result
|
---|
| 67 | var results = ResultCollectionParameter.ActualValue;
|
---|
| 68 |
|
---|
| 69 | IntRange slidingWindow;
|
---|
| 70 | if (!results.ContainsKey(SlidingWindowResultName)) {
|
---|
| 71 | slidingWindow = new IntRange();
|
---|
| 72 | results.Add(new Result(SlidingWindowResultName, slidingWindow));
|
---|
| 73 | } else slidingWindow = (IntRange)results[SlidingWindowResultName].Value;
|
---|
| 74 | slidingWindow.Start = FitnessCalculationPartitionParameter.ActualValue.Start;
|
---|
| 75 | slidingWindow.End = FitnessCalculationPartitionParameter.ActualValue.End;
|
---|
| 76 |
|
---|
| 77 | SlidingWindowData slidingWindowData;
|
---|
| 78 | if (!results.ContainsKey(SlidingWindowDataResultName)) {
|
---|
[9870] | 79 | slidingWindowData = new SlidingWindowData(FitnessCalculationPartitionParameter.ActualValue, ProblemDataParameter.ActualValue);
|
---|
[9162] | 80 | results.Add(new Result(SlidingWindowDataResultName, slidingWindowData));
|
---|
| 81 | } else slidingWindowData = (SlidingWindowData)results[SlidingWindowDataResultName].Value;
|
---|
| 82 |
|
---|
| 83 | IEnumerable<double> estimatedValues = Enumerable.Empty<double>();
|
---|
| 84 | if (results.ContainsKey(BestTrainingSolutionResultName)) {
|
---|
| 85 | var trainingSolution = results[BestTrainingSolutionResultName].Value;
|
---|
| 86 | var regressionSolution = trainingSolution as IRegressionSolution;
|
---|
| 87 | var classificationSolution = trainingSolution as IClassificationSolution;
|
---|
| 88 |
|
---|
[9707] | 89 | if (regressionSolution != null) estimatedValues = regressionSolution.EstimatedTrainingValues;
|
---|
| 90 | if (classificationSolution != null) estimatedValues = classificationSolution.EstimatedTrainingClassValues;
|
---|
[9162] | 91 | }
|
---|
| 92 |
|
---|
| 93 | slidingWindowData.SlidingWindowPosition.Start = FitnessCalculationPartitionParameter.ActualValue.Start;
|
---|
| 94 | slidingWindowData.SlidingWindowPosition.End = FitnessCalculationPartitionParameter.ActualValue.End;
|
---|
| 95 | slidingWindowData.EstimatedValues = estimatedValues;
|
---|
| 96 | return base.Apply();
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 | }
|
---|