1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.ComponentModel;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
32 | [StorableClass]
|
---|
33 | [Item("SlidingWindowBestSolutionsCollection", "An object holding a collection of the best sliding window solutions.")]
|
---|
34 | public abstract class SlidingWindowBestSolutionsCollection : Item {
|
---|
35 | [Storable]
|
---|
36 | private List<SlidingWindowRange> slidingWindowRanges;
|
---|
37 |
|
---|
38 | public List<SlidingWindowRange> SlidingWindowRanges {
|
---|
39 | get { return slidingWindowRanges; }
|
---|
40 | private set { slidingWindowRanges = value; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | [Storable(AllowOneWay = true, Name = "bestSolutions")]
|
---|
44 | private Dictionary<Tuple<int, int>, ISymbolicExpressionTree> StorableBestSolutions {
|
---|
45 | set {
|
---|
46 | var bestSolutions = value;
|
---|
47 | var ranges = bestSolutions.Keys.OrderBy(x => x.Item1).ToList();
|
---|
48 | slidingWindowRanges = ranges.Select(x => new SlidingWindowRange(x.Item1, x.Item2)).ToList();
|
---|
49 | slidingWindowBestSolutions = new Dictionary<SlidingWindowRange, ISymbolicExpressionTree>();
|
---|
50 | for (int i = 0; i < slidingWindowRanges.Count; ++i) {
|
---|
51 | slidingWindowBestSolutions.Add(slidingWindowRanges[i], bestSolutions[ranges[i]]);
|
---|
52 | }
|
---|
53 | }
|
---|
54 | }
|
---|
55 |
|
---|
56 | [Storable]
|
---|
57 | private Dictionary<SlidingWindowRange, ISymbolicExpressionTree> slidingWindowBestSolutions;
|
---|
58 |
|
---|
59 | public Dictionary<SlidingWindowRange, ISymbolicExpressionTree> SlidingWindowBestSolutions {
|
---|
60 | get { return slidingWindowBestSolutions; }
|
---|
61 | set { slidingWindowBestSolutions = value; }
|
---|
62 | }
|
---|
63 |
|
---|
64 | [Storable]
|
---|
65 | private IDataAnalysisProblemData problemData;
|
---|
66 |
|
---|
67 | public IDataAnalysisProblemData ProblemData {
|
---|
68 | get { return problemData; }
|
---|
69 | set { problemData = value; }
|
---|
70 | }
|
---|
71 |
|
---|
72 | [Storable]
|
---|
73 | private ISymbolicDataAnalysisExpressionTreeInterpreter interpreter;
|
---|
74 |
|
---|
75 | public ISymbolicDataAnalysisExpressionTreeInterpreter Interpreter {
|
---|
76 | get { return interpreter; }
|
---|
77 | set { interpreter = value; }
|
---|
78 | }
|
---|
79 |
|
---|
80 | [Storable]
|
---|
81 | private bool applyLinearScaling;
|
---|
82 |
|
---|
83 | public bool ApplyLinearScaling {
|
---|
84 | get { return applyLinearScaling; }
|
---|
85 | set { applyLinearScaling = value; }
|
---|
86 | }
|
---|
87 |
|
---|
88 | [StorableHook(HookType.AfterDeserialization)]
|
---|
89 | private void AfterDeserialization() {
|
---|
90 | if (bw == null) {
|
---|
91 | bw = new BackgroundWorker();
|
---|
92 | bw.WorkerSupportsCancellation = true;
|
---|
93 | bw.WorkerReportsProgress = true;
|
---|
94 | bw.DoWork += CalculateQualities;
|
---|
95 | }
|
---|
96 | }
|
---|
97 |
|
---|
98 | public double[,] SlidingWindowQualities { get; set; }
|
---|
99 |
|
---|
100 | private BackgroundWorker bw;
|
---|
101 |
|
---|
102 | public enum QualityMeasures { PEARSON, MSE };
|
---|
103 |
|
---|
104 | private QualityMeasures qualityMeasure;
|
---|
105 |
|
---|
106 | public QualityMeasures QualityMeasure {
|
---|
107 | get { return qualityMeasure; }
|
---|
108 | set {
|
---|
109 | if (qualityMeasure != value) {
|
---|
110 | qualityMeasure = value;
|
---|
111 | CalculateQualities();
|
---|
112 | }
|
---|
113 | }
|
---|
114 | }
|
---|
115 |
|
---|
116 | public bool QualitiesCalculationInProgress {
|
---|
117 | get { return bw.IsBusy; }
|
---|
118 | }
|
---|
119 |
|
---|
120 | public event ProgressChangedEventHandler QualitiesCalculationProgress {
|
---|
121 | add { bw.ProgressChanged += value; }
|
---|
122 | remove { bw.ProgressChanged -= value; }
|
---|
123 | }
|
---|
124 |
|
---|
125 | public event RunWorkerCompletedEventHandler QualitiesCalculationCompleted {
|
---|
126 | add { bw.RunWorkerCompleted += value; }
|
---|
127 | remove { bw.RunWorkerCompleted -= value; }
|
---|
128 | }
|
---|
129 |
|
---|
130 | public event EventHandler QualitiesCalculationStarted;
|
---|
131 |
|
---|
132 | private void OnQualitiesCalculationStarted(object sender, EventArgs e) {
|
---|
133 | var started = QualitiesCalculationStarted;
|
---|
134 | if (started != null) {
|
---|
135 | started(sender, e);
|
---|
136 | }
|
---|
137 | }
|
---|
138 |
|
---|
139 | public event EventHandler QualitiesUpdated;
|
---|
140 | private void OnQualitiesUpdated(object sender, EventArgs e) {
|
---|
141 | var updated = QualitiesUpdated;
|
---|
142 | if (updated != null) {
|
---|
143 | updated(sender, e);
|
---|
144 | }
|
---|
145 | }
|
---|
146 |
|
---|
147 | [StorableConstructor]
|
---|
148 | protected SlidingWindowBestSolutionsCollection(bool deserializing)
|
---|
149 | : base(deserializing) {
|
---|
150 | }
|
---|
151 |
|
---|
152 | protected SlidingWindowBestSolutionsCollection(SlidingWindowBestSolutionsCollection original, Cloner cloner)
|
---|
153 | : base(original, cloner) {
|
---|
154 | this.slidingWindowBestSolutions = original.slidingWindowBestSolutions;
|
---|
155 | this.problemData = original.problemData;
|
---|
156 | this.interpreter = original.interpreter;
|
---|
157 | this.applyLinearScaling = original.ApplyLinearScaling;
|
---|
158 | }
|
---|
159 |
|
---|
160 | protected SlidingWindowBestSolutionsCollection() {
|
---|
161 | slidingWindowBestSolutions = new Dictionary<SlidingWindowRange, ISymbolicExpressionTree>();
|
---|
162 | slidingWindowRanges = new List<SlidingWindowRange>();
|
---|
163 | qualityMeasure = QualityMeasures.PEARSON;
|
---|
164 |
|
---|
165 | bw = new BackgroundWorker();
|
---|
166 | bw.WorkerSupportsCancellation = true;
|
---|
167 | bw.WorkerReportsProgress = true;
|
---|
168 |
|
---|
169 | bw.DoWork += CalculateQualities;
|
---|
170 | }
|
---|
171 |
|
---|
172 | public bool ContainsKey(SlidingWindowRange key) {
|
---|
173 | return slidingWindowBestSolutions.ContainsKey(key);
|
---|
174 | }
|
---|
175 |
|
---|
176 | public ISymbolicExpressionTree this[SlidingWindowRange key] {
|
---|
177 | get { return slidingWindowBestSolutions[key]; }
|
---|
178 | set {
|
---|
179 | AddSolution(key, value); // this should be fast so there's no need for a background worker
|
---|
180 | OnQualitiesUpdated(this, EventArgs.Empty);
|
---|
181 | }
|
---|
182 | }
|
---|
183 |
|
---|
184 | public void Add(SlidingWindowRange range, ISymbolicExpressionTree solution) {
|
---|
185 | if (!slidingWindowBestSolutions.ContainsKey(range)) {
|
---|
186 | slidingWindowBestSolutions.Add(range, solution);
|
---|
187 | slidingWindowRanges.Add(range);
|
---|
188 | } else {
|
---|
189 | slidingWindowBestSolutions[range] = solution;
|
---|
190 | }
|
---|
191 | }
|
---|
192 |
|
---|
193 | public void Clear() {
|
---|
194 | if (slidingWindowBestSolutions != null) slidingWindowBestSolutions.Clear();
|
---|
195 | if (slidingWindowRanges != null) slidingWindowRanges.Clear();
|
---|
196 | }
|
---|
197 |
|
---|
198 | public abstract ISymbolicDataAnalysisModel CreateModel(ISymbolicExpressionTree tree,
|
---|
199 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
200 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue);
|
---|
201 |
|
---|
202 | public abstract ISymbolicDataAnalysisSolution CreateSolution(ISymbolicDataAnalysisModel model,
|
---|
203 | IDataAnalysisProblemData problemData);
|
---|
204 |
|
---|
205 | private void AddSolution(SlidingWindowRange range, ISymbolicExpressionTree solution) {
|
---|
206 | Add(range, solution);
|
---|
207 |
|
---|
208 | var solutions = slidingWindowRanges.Select(x => slidingWindowBestSolutions[x]).ToList();
|
---|
209 |
|
---|
210 | var nRows = solutions.Count;
|
---|
211 | var nCols = nRows + 1; // an extra column corresponding to the whole trainig partition
|
---|
212 |
|
---|
213 | var trainingIndices = problemData.TrainingIndices.ToList();
|
---|
214 | var matrix = new double[nRows, nCols];
|
---|
215 |
|
---|
216 | // copy old qualities into the new matrix
|
---|
217 | for (int i = 0; i < nRows - 1; ++i) {
|
---|
218 | for (int j = 0; j < nCols - 1; ++j) {
|
---|
219 | matrix[i, j] = SlidingWindowQualities[i, j];
|
---|
220 | }
|
---|
221 | }
|
---|
222 | // copy qualities of new solution into the new matrix
|
---|
223 | var rows = Enumerable.Range(slidingWindowRanges.First().Start, slidingWindowRanges.Last().End - slidingWindowRanges.First().Start).ToList();
|
---|
224 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows).ToList();
|
---|
225 | var originalValues = ProblemData.Dataset.GetDoubleValues(GetTargetVariable(ProblemData), rows).ToList();
|
---|
226 | for (int i = 0; i < nCols; ++i) {
|
---|
227 | if (i == nCols - 1) {
|
---|
228 | matrix[nRows - 1, i] = CalculateQuality(solution, trainingIndices);
|
---|
229 | } else {
|
---|
230 | var indices = Enumerable.Range(slidingWindowRanges[i].Start, slidingWindowRanges[i].Size).ToList();
|
---|
231 | var estimated = indices.Select(x => estimatedValues[x]);
|
---|
232 | var original = indices.Select(x => originalValues[x]);
|
---|
233 | matrix[nRows - 1, i] = CalculateQuality(estimated, original);
|
---|
234 | }
|
---|
235 | }
|
---|
236 | // shift old training qualities one column to the right
|
---|
237 | rows = Enumerable.Range(range.Start, range.Size).ToList();
|
---|
238 | for (int i = 0; i < nRows; ++i) {
|
---|
239 | matrix[i, nCols - 1] = matrix[i, nCols - 2];
|
---|
240 | matrix[i, nCols - 2] = CalculateQuality(solutions[i], rows);
|
---|
241 | }
|
---|
242 | // replace old matrix with new matrix
|
---|
243 | SlidingWindowQualities = matrix;
|
---|
244 | }
|
---|
245 |
|
---|
246 | private void CalculateQualities(object sender, DoWorkEventArgs e) {
|
---|
247 | var worker = sender as BackgroundWorker;
|
---|
248 | if (worker == null) return;
|
---|
249 | if (worker.CancellationPending) {
|
---|
250 | e.Cancel = true;
|
---|
251 | return;
|
---|
252 | }
|
---|
253 |
|
---|
254 | OnQualitiesCalculationStarted(this, EventArgs.Empty);
|
---|
255 |
|
---|
256 | var ranges = SlidingWindowRanges;
|
---|
257 | var solutions = ranges.Select(x => SlidingWindowBestSolutions[x]).ToList();
|
---|
258 |
|
---|
259 | int nRows = solutions.Count;
|
---|
260 | int nCols = ranges.Count + 1;
|
---|
261 |
|
---|
262 | SlidingWindowQualities = new double[nRows, nCols];
|
---|
263 | var rows = Enumerable.Range(ranges.First().Start, ranges.Last().End - ranges.First().Start).ToList();
|
---|
264 | var originalValues = ProblemData.Dataset.GetDoubleValues(GetTargetVariable(ProblemData), rows).ToList();
|
---|
265 |
|
---|
266 | for (int i = 0; i < nRows; ++i) {
|
---|
267 | if (worker.CancellationPending) {
|
---|
268 | e.Cancel = true;
|
---|
269 | return;
|
---|
270 | }
|
---|
271 |
|
---|
272 | var solution = solutions[i];
|
---|
273 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows).ToList();
|
---|
274 |
|
---|
275 | for (int j = 0; j < nCols; ++j) {
|
---|
276 | double q;
|
---|
277 | if (j == nCols - 1) {
|
---|
278 | q = CalculateQuality(solution, problemData.TrainingIndices);
|
---|
279 | } else {
|
---|
280 | var range = ranges[j];
|
---|
281 | var indices = Enumerable.Range(range.Start, range.Size).ToList();
|
---|
282 | var estimated = indices.Select(x => estimatedValues[x]);
|
---|
283 | var original = indices.Select(x => originalValues[x]);
|
---|
284 |
|
---|
285 | q = CalculateQuality(estimated, original);
|
---|
286 | }
|
---|
287 |
|
---|
288 | SlidingWindowQualities[i, j] = q;
|
---|
289 | }
|
---|
290 |
|
---|
291 | worker.ReportProgress((int)Math.Round(i * 100.0 / nRows));
|
---|
292 | }
|
---|
293 | }
|
---|
294 |
|
---|
295 | public void CalculateQualities() {
|
---|
296 | bw.RunWorkerAsync();
|
---|
297 | }
|
---|
298 |
|
---|
299 | private string GetTargetVariable(IDataAnalysisProblemData problemData) {
|
---|
300 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
301 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
302 | if (regressionProblemData != null) return regressionProblemData.TargetVariable;
|
---|
303 | if (classificationProblemData != null) return classificationProblemData.TargetVariable;
|
---|
304 | throw new NotSupportedException();
|
---|
305 | }
|
---|
306 |
|
---|
307 | private double CalculateQuality(IEnumerable<double> estimatedValues, IEnumerable<double> originalValues) {
|
---|
308 | var errorState = OnlineCalculatorError.None;
|
---|
309 | double quality = 0.0;
|
---|
310 | switch (QualityMeasure) {
|
---|
311 | case QualityMeasures.PEARSON:
|
---|
312 | quality = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState);
|
---|
313 | break;
|
---|
314 | case QualityMeasures.MSE:
|
---|
315 | quality = OnlineMeanSquaredErrorCalculator.Calculate(estimatedValues, originalValues, out errorState);
|
---|
316 | break;
|
---|
317 | }
|
---|
318 | return errorState == OnlineCalculatorError.None ? quality : double.NaN;
|
---|
319 | }
|
---|
320 |
|
---|
321 | private double CalculateQuality(ISymbolicExpressionTree tree, IEnumerable<int> rows) {
|
---|
322 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(tree, ProblemData.Dataset, rows);
|
---|
323 | var originalValues = ProblemData.Dataset.GetDoubleValues(GetTargetVariable(ProblemData), rows);
|
---|
324 | double quality = 0;
|
---|
325 | var errorState = new OnlineCalculatorError();
|
---|
326 | switch (QualityMeasure) {
|
---|
327 | case QualityMeasures.PEARSON:
|
---|
328 | quality = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState);
|
---|
329 | break;
|
---|
330 | case QualityMeasures.MSE:
|
---|
331 | quality = OnlineMeanSquaredErrorCalculator.Calculate(estimatedValues, originalValues, out errorState);
|
---|
332 | break;
|
---|
333 | }
|
---|
334 | return errorState == OnlineCalculatorError.None ? quality : double.NaN;
|
---|
335 | }
|
---|
336 | }
|
---|
337 |
|
---|
338 | [StorableClass]
|
---|
339 | public sealed class SlidingWindowRange : IEquatable<SlidingWindowRange> {
|
---|
340 | [Storable]
|
---|
341 | private readonly Tuple<int, int> tuple;
|
---|
342 |
|
---|
343 | public int Start { get { return tuple.Item1; } }
|
---|
344 | public int End { get { return tuple.Item2; } }
|
---|
345 |
|
---|
346 | [StorableConstructor]
|
---|
347 | private SlidingWindowRange(bool deserializable) { }
|
---|
348 | private SlidingWindowRange() { }
|
---|
349 |
|
---|
350 | public SlidingWindowRange(int start, int end) {
|
---|
351 | if (start > end) throw new ArgumentException("SlidingWindowRange: Start cannot be greater than End.");
|
---|
352 | tuple = new Tuple<int, int>(start, end);
|
---|
353 | }
|
---|
354 |
|
---|
355 | public bool Equals(SlidingWindowRange other) {
|
---|
356 | return tuple.Equals(other.tuple);
|
---|
357 | }
|
---|
358 |
|
---|
359 | public override int GetHashCode() {
|
---|
360 | return tuple.GetHashCode();
|
---|
361 | }
|
---|
362 |
|
---|
363 | public int Size {
|
---|
364 | get { return End - Start; }
|
---|
365 | }
|
---|
366 | }
|
---|
367 | }
|
---|