[10396] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[10720] | 22 | using System;
|
---|
[10396] | 23 | using System.Collections.Generic;
|
---|
[10720] | 24 | using System.ComponentModel;
|
---|
| 25 | using System.Linq;
|
---|
[10396] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 32 | [StorableClass]
|
---|
[10398] | 33 | [Item("SlidingWindowBestSolutionsCollection", "An object holding a collection of the best sliding window solutions.")]
|
---|
[10396] | 34 | public abstract class SlidingWindowBestSolutionsCollection : Item {
|
---|
| 35 | [Storable]
|
---|
[10720] | 36 | private List<SlidingWindowRange> slidingWindowRanges;
|
---|
[10721] | 37 |
|
---|
[10720] | 38 | public List<SlidingWindowRange> SlidingWindowRanges {
|
---|
| 39 | get { return slidingWindowRanges; }
|
---|
| 40 | private set { slidingWindowRanges = value; }
|
---|
[10396] | 41 | }
|
---|
| 42 |
|
---|
[10720] | 43 | [Storable(AllowOneWay = true, Name = "bestSolutions")]
|
---|
| 44 | private Dictionary<Tuple<int, int>, ISymbolicExpressionTree> StorableBestSolutions {
|
---|
| 45 | set {
|
---|
| 46 | var bestSolutions = value;
|
---|
| 47 | var ranges = bestSolutions.Keys.OrderBy(x => x.Item1).ToList();
|
---|
| 48 | slidingWindowRanges = ranges.Select(x => new SlidingWindowRange(x.Item1, x.Item2)).ToList();
|
---|
| 49 | slidingWindowBestSolutions = new Dictionary<SlidingWindowRange, ISymbolicExpressionTree>();
|
---|
| 50 | for (int i = 0; i < slidingWindowRanges.Count; ++i) {
|
---|
| 51 | slidingWindowBestSolutions.Add(slidingWindowRanges[i], bestSolutions[ranges[i]]);
|
---|
| 52 | }
|
---|
| 53 | }
|
---|
| 54 | }
|
---|
| 55 |
|
---|
[10396] | 56 | [Storable]
|
---|
[10720] | 57 | private Dictionary<SlidingWindowRange, ISymbolicExpressionTree> slidingWindowBestSolutions;
|
---|
[10721] | 58 |
|
---|
[10720] | 59 | public Dictionary<SlidingWindowRange, ISymbolicExpressionTree> SlidingWindowBestSolutions {
|
---|
| 60 | get { return slidingWindowBestSolutions; }
|
---|
| 61 | set { slidingWindowBestSolutions = value; }
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | [Storable]
|
---|
[10398] | 65 | private IDataAnalysisProblemData problemData;
|
---|
[10721] | 66 |
|
---|
[10398] | 67 | public IDataAnalysisProblemData ProblemData {
|
---|
| 68 | get { return problemData; }
|
---|
| 69 | set { problemData = value; }
|
---|
| 70 | }
|
---|
| 71 |
|
---|
| 72 | [Storable]
|
---|
| 73 | private ISymbolicDataAnalysisExpressionTreeInterpreter interpreter;
|
---|
[10721] | 74 |
|
---|
[10398] | 75 | public ISymbolicDataAnalysisExpressionTreeInterpreter Interpreter {
|
---|
| 76 | get { return interpreter; }
|
---|
| 77 | set { interpreter = value; }
|
---|
| 78 | }
|
---|
[10720] | 79 |
|
---|
| 80 | [Storable]
|
---|
| 81 | private bool applyLinearScaling;
|
---|
[10721] | 82 |
|
---|
[10720] | 83 | public bool ApplyLinearScaling {
|
---|
| 84 | get { return applyLinearScaling; }
|
---|
| 85 | set { applyLinearScaling = value; }
|
---|
| 86 | }
|
---|
| 87 |
|
---|
[10402] | 88 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 89 | private void AfterDeserialization() {
|
---|
[10720] | 90 | if (bw == null) {
|
---|
| 91 | bw = new BackgroundWorker();
|
---|
| 92 | bw.WorkerSupportsCancellation = true;
|
---|
| 93 | bw.WorkerReportsProgress = true;
|
---|
| 94 | bw.DoWork += CalculateQualities;
|
---|
| 95 | }
|
---|
[10402] | 96 | }
|
---|
[10398] | 97 |
|
---|
[10720] | 98 | public double[,] SlidingWindowQualities { get; set; }
|
---|
| 99 |
|
---|
| 100 | private BackgroundWorker bw;
|
---|
| 101 |
|
---|
| 102 | public enum QualityMeasures { PEARSON, MSE };
|
---|
| 103 |
|
---|
| 104 | private QualityMeasures qualityMeasure;
|
---|
[10721] | 105 |
|
---|
[10720] | 106 | public QualityMeasures QualityMeasure {
|
---|
| 107 | get { return qualityMeasure; }
|
---|
| 108 | set {
|
---|
| 109 | if (qualityMeasure != value) {
|
---|
| 110 | qualityMeasure = value;
|
---|
| 111 | CalculateQualities();
|
---|
| 112 | }
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 |
|
---|
| 116 | public bool QualitiesCalculationInProgress {
|
---|
| 117 | get { return bw.IsBusy; }
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | public event ProgressChangedEventHandler QualitiesCalculationProgress {
|
---|
| 121 | add { bw.ProgressChanged += value; }
|
---|
| 122 | remove { bw.ProgressChanged -= value; }
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | public event RunWorkerCompletedEventHandler QualitiesCalculationCompleted {
|
---|
| 126 | add { bw.RunWorkerCompleted += value; }
|
---|
| 127 | remove { bw.RunWorkerCompleted -= value; }
|
---|
| 128 | }
|
---|
| 129 |
|
---|
[10721] | 130 | public event EventHandler QualitiesCalculationStarted;
|
---|
| 131 |
|
---|
| 132 | private void OnQualitiesCalculationStarted(object sender, EventArgs e) {
|
---|
| 133 | var started = QualitiesCalculationStarted;
|
---|
| 134 | if (started != null) {
|
---|
| 135 | started(sender, e);
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 |
|
---|
[10720] | 139 | public event EventHandler QualitiesUpdated;
|
---|
| 140 | private void OnQualitiesUpdated(object sender, EventArgs e) {
|
---|
| 141 | var updated = QualitiesUpdated;
|
---|
[10721] | 142 | if (updated != null) {
|
---|
| 143 | updated(sender, e);
|
---|
| 144 | }
|
---|
[10720] | 145 | }
|
---|
| 146 |
|
---|
[10402] | 147 | [StorableConstructor]
|
---|
[10721] | 148 | protected SlidingWindowBestSolutionsCollection(bool deserializing)
|
---|
| 149 | : base(deserializing) {
|
---|
| 150 | }
|
---|
| 151 |
|
---|
[10396] | 152 | protected SlidingWindowBestSolutionsCollection(SlidingWindowBestSolutionsCollection original, Cloner cloner)
|
---|
| 153 | : base(original, cloner) {
|
---|
[10720] | 154 | this.slidingWindowBestSolutions = original.slidingWindowBestSolutions;
|
---|
[10402] | 155 | this.problemData = original.problemData;
|
---|
| 156 | this.interpreter = original.interpreter;
|
---|
[10720] | 157 | this.applyLinearScaling = original.ApplyLinearScaling;
|
---|
[10396] | 158 | }
|
---|
[10721] | 159 |
|
---|
[10396] | 160 | protected SlidingWindowBestSolutionsCollection() {
|
---|
[10720] | 161 | slidingWindowBestSolutions = new Dictionary<SlidingWindowRange, ISymbolicExpressionTree>();
|
---|
| 162 | slidingWindowRanges = new List<SlidingWindowRange>();
|
---|
| 163 | qualityMeasure = QualityMeasures.PEARSON;
|
---|
| 164 |
|
---|
| 165 | bw = new BackgroundWorker();
|
---|
| 166 | bw.WorkerSupportsCancellation = true;
|
---|
| 167 | bw.WorkerReportsProgress = true;
|
---|
| 168 |
|
---|
| 169 | bw.DoWork += CalculateQualities;
|
---|
[10396] | 170 | }
|
---|
| 171 |
|
---|
[10413] | 172 | public bool ContainsKey(SlidingWindowRange key) {
|
---|
[10720] | 173 | return slidingWindowBestSolutions.ContainsKey(key);
|
---|
[10396] | 174 | }
|
---|
| 175 |
|
---|
[10413] | 176 | public ISymbolicExpressionTree this[SlidingWindowRange key] {
|
---|
[10721] | 177 | get { return slidingWindowBestSolutions[key]; }
|
---|
[10413] | 178 | set {
|
---|
[10720] | 179 | AddSolution(key, value); // this should be fast so there's no need for a background worker
|
---|
| 180 | OnQualitiesUpdated(this, EventArgs.Empty);
|
---|
[10413] | 181 | }
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | public void Add(SlidingWindowRange range, ISymbolicExpressionTree solution) {
|
---|
[10720] | 185 | if (!slidingWindowBestSolutions.ContainsKey(range)) {
|
---|
| 186 | slidingWindowBestSolutions.Add(range, solution);
|
---|
| 187 | slidingWindowRanges.Add(range);
|
---|
| 188 | } else {
|
---|
| 189 | slidingWindowBestSolutions[range] = solution;
|
---|
| 190 | }
|
---|
[10413] | 191 | }
|
---|
| 192 |
|
---|
[10396] | 193 | public void Clear() {
|
---|
[10720] | 194 | if (slidingWindowBestSolutions != null) slidingWindowBestSolutions.Clear();
|
---|
| 195 | if (slidingWindowRanges != null) slidingWindowRanges.Clear();
|
---|
[10396] | 196 | }
|
---|
| 197 |
|
---|
[10721] | 198 | public abstract ISymbolicDataAnalysisModel CreateModel(ISymbolicExpressionTree tree,
|
---|
| 199 | ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,
|
---|
| 200 | double lowerEstimationLimit = double.MinValue, double upperEstimationLimit = double.MaxValue);
|
---|
[10396] | 201 |
|
---|
[10721] | 202 | public abstract ISymbolicDataAnalysisSolution CreateSolution(ISymbolicDataAnalysisModel model,
|
---|
| 203 | IDataAnalysisProblemData problemData);
|
---|
[10720] | 204 |
|
---|
| 205 | private void AddSolution(SlidingWindowRange range, ISymbolicExpressionTree solution) {
|
---|
| 206 | Add(range, solution);
|
---|
| 207 |
|
---|
| 208 | var solutions = slidingWindowRanges.Select(x => slidingWindowBestSolutions[x]).ToList();
|
---|
| 209 |
|
---|
| 210 | var nRows = solutions.Count;
|
---|
| 211 | var nCols = nRows + 1; // an extra column corresponding to the whole trainig partition
|
---|
| 212 |
|
---|
| 213 | var trainingIndices = problemData.TrainingIndices.ToList();
|
---|
| 214 | var matrix = new double[nRows, nCols];
|
---|
[10721] | 215 |
|
---|
[10720] | 216 | // copy old qualities into the new matrix
|
---|
| 217 | for (int i = 0; i < nRows - 1; ++i) {
|
---|
| 218 | for (int j = 0; j < nCols - 1; ++j) {
|
---|
| 219 | matrix[i, j] = SlidingWindowQualities[i, j];
|
---|
| 220 | }
|
---|
| 221 | }
|
---|
| 222 | // copy qualities of new solution into the new matrix
|
---|
[10721] | 223 | var rows = Enumerable.Range(slidingWindowRanges.First().Start, slidingWindowRanges.Last().End - slidingWindowRanges.First().Start).ToList();
|
---|
| 224 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows).ToList();
|
---|
| 225 | var originalValues = ProblemData.Dataset.GetDoubleValues(GetTargetVariable(ProblemData), rows).ToList();
|
---|
[10720] | 226 | for (int i = 0; i < nCols; ++i) {
|
---|
[10721] | 227 | if (i == nCols - 1) {
|
---|
| 228 | matrix[nRows - 1, i] = CalculateQuality(solution, trainingIndices);
|
---|
| 229 | } else {
|
---|
| 230 | var indices = Enumerable.Range(slidingWindowRanges[i].Start, slidingWindowRanges[i].Size).ToList();
|
---|
| 231 | var estimated = indices.Select(x => estimatedValues[x]);
|
---|
| 232 | var original = indices.Select(x => originalValues[x]);
|
---|
| 233 | matrix[nRows - 1, i] = CalculateQuality(estimated, original);
|
---|
| 234 | }
|
---|
[10720] | 235 | }
|
---|
| 236 | // shift old training qualities one column to the right
|
---|
| 237 | rows = Enumerable.Range(range.Start, range.Size).ToList();
|
---|
| 238 | for (int i = 0; i < nRows; ++i) {
|
---|
| 239 | matrix[i, nCols - 1] = matrix[i, nCols - 2];
|
---|
| 240 | matrix[i, nCols - 2] = CalculateQuality(solutions[i], rows);
|
---|
| 241 | }
|
---|
| 242 | // replace old matrix with new matrix
|
---|
| 243 | SlidingWindowQualities = matrix;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | private void CalculateQualities(object sender, DoWorkEventArgs e) {
|
---|
| 247 | var worker = sender as BackgroundWorker;
|
---|
| 248 | if (worker == null) return;
|
---|
| 249 | if (worker.CancellationPending) {
|
---|
| 250 | e.Cancel = true;
|
---|
| 251 | return;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
[10721] | 254 | OnQualitiesCalculationStarted(this, EventArgs.Empty);
|
---|
| 255 |
|
---|
[10720] | 256 | var ranges = SlidingWindowRanges;
|
---|
| 257 | var solutions = ranges.Select(x => SlidingWindowBestSolutions[x]).ToList();
|
---|
| 258 |
|
---|
[10721] | 259 | int nRows = solutions.Count;
|
---|
| 260 | int nCols = ranges.Count + 1;
|
---|
[10720] | 261 |
|
---|
[10721] | 262 | SlidingWindowQualities = new double[nRows, nCols];
|
---|
| 263 | var rows = Enumerable.Range(ranges.First().Start, ranges.Last().End - ranges.First().Start).ToList();
|
---|
| 264 | var originalValues = ProblemData.Dataset.GetDoubleValues(GetTargetVariable(ProblemData), rows).ToList();
|
---|
[10720] | 265 |
|
---|
[10721] | 266 | for (int i = 0; i < nRows; ++i) {
|
---|
[10720] | 267 | if (worker.CancellationPending) {
|
---|
| 268 | e.Cancel = true;
|
---|
| 269 | return;
|
---|
| 270 | }
|
---|
| 271 |
|
---|
| 272 | var solution = solutions[i];
|
---|
[10721] | 273 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(solution, problemData.Dataset, rows).ToList();
|
---|
[10720] | 274 |
|
---|
[10721] | 275 | for (int j = 0; j < nCols; ++j) {
|
---|
| 276 | double q;
|
---|
| 277 | if (j == nCols - 1) {
|
---|
| 278 | q = CalculateQuality(solution, problemData.TrainingIndices);
|
---|
| 279 | } else {
|
---|
| 280 | var range = ranges[j];
|
---|
| 281 | var indices = Enumerable.Range(range.Start, range.Size).ToList();
|
---|
| 282 | var estimated = indices.Select(x => estimatedValues[x]);
|
---|
| 283 | var original = indices.Select(x => originalValues[x]);
|
---|
| 284 |
|
---|
| 285 | q = CalculateQuality(estimated, original);
|
---|
| 286 | }
|
---|
| 287 |
|
---|
[10720] | 288 | SlidingWindowQualities[i, j] = q;
|
---|
| 289 | }
|
---|
| 290 |
|
---|
[10721] | 291 | worker.ReportProgress((int)Math.Round(i * 100.0 / nRows));
|
---|
[10720] | 292 | }
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 | public void CalculateQualities() {
|
---|
| 296 | bw.RunWorkerAsync();
|
---|
| 297 | }
|
---|
| 298 |
|
---|
| 299 | private string GetTargetVariable(IDataAnalysisProblemData problemData) {
|
---|
| 300 | var regressionProblemData = problemData as IRegressionProblemData;
|
---|
| 301 | var classificationProblemData = problemData as IClassificationProblemData;
|
---|
| 302 | if (regressionProblemData != null) return regressionProblemData.TargetVariable;
|
---|
| 303 | if (classificationProblemData != null) return classificationProblemData.TargetVariable;
|
---|
| 304 | throw new NotSupportedException();
|
---|
| 305 | }
|
---|
| 306 |
|
---|
[10721] | 307 | private double CalculateQuality(IEnumerable<double> estimatedValues, IEnumerable<double> originalValues) {
|
---|
| 308 | var errorState = OnlineCalculatorError.None;
|
---|
| 309 | double quality = 0.0;
|
---|
| 310 | switch (QualityMeasure) {
|
---|
| 311 | case QualityMeasures.PEARSON:
|
---|
| 312 | quality = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState);
|
---|
| 313 | break;
|
---|
| 314 | case QualityMeasures.MSE:
|
---|
| 315 | quality = OnlineMeanSquaredErrorCalculator.Calculate(estimatedValues, originalValues, out errorState);
|
---|
| 316 | break;
|
---|
| 317 | }
|
---|
| 318 | return errorState == OnlineCalculatorError.None ? quality : double.NaN;
|
---|
| 319 | }
|
---|
| 320 |
|
---|
[10720] | 321 | private double CalculateQuality(ISymbolicExpressionTree tree, IEnumerable<int> rows) {
|
---|
| 322 | var estimatedValues = Interpreter.GetSymbolicExpressionTreeValues(tree, ProblemData.Dataset, rows);
|
---|
| 323 | var originalValues = ProblemData.Dataset.GetDoubleValues(GetTargetVariable(ProblemData), rows);
|
---|
| 324 | double quality = 0;
|
---|
| 325 | var errorState = new OnlineCalculatorError();
|
---|
| 326 | switch (QualityMeasure) {
|
---|
| 327 | case QualityMeasures.PEARSON:
|
---|
| 328 | quality = OnlinePearsonsRSquaredCalculator.Calculate(estimatedValues, originalValues, out errorState);
|
---|
| 329 | break;
|
---|
| 330 | case QualityMeasures.MSE:
|
---|
| 331 | quality = OnlineMeanSquaredErrorCalculator.Calculate(estimatedValues, originalValues, out errorState);
|
---|
| 332 | break;
|
---|
| 333 | }
|
---|
| 334 | return errorState == OnlineCalculatorError.None ? quality : double.NaN;
|
---|
| 335 | }
|
---|
[10396] | 336 | }
|
---|
[10720] | 337 |
|
---|
[10828] | 338 | [StorableClass]
|
---|
[10829] | 339 | public sealed class SlidingWindowRange : IEquatable<SlidingWindowRange> {
|
---|
[10828] | 340 | [Storable]
|
---|
[10720] | 341 | private readonly Tuple<int, int> tuple;
|
---|
| 342 |
|
---|
| 343 | public int Start { get { return tuple.Item1; } }
|
---|
| 344 | public int End { get { return tuple.Item2; } }
|
---|
| 345 |
|
---|
[10828] | 346 | [StorableConstructor]
|
---|
| 347 | private SlidingWindowRange(bool deserializable) { }
|
---|
| 348 | private SlidingWindowRange() { }
|
---|
| 349 |
|
---|
[10720] | 350 | public SlidingWindowRange(int start, int end) {
|
---|
| 351 | if (start > end) throw new ArgumentException("SlidingWindowRange: Start cannot be greater than End.");
|
---|
| 352 | tuple = new Tuple<int, int>(start, end);
|
---|
| 353 | }
|
---|
| 354 |
|
---|
| 355 | public bool Equals(SlidingWindowRange other) {
|
---|
| 356 | return tuple.Equals(other.tuple);
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 | public override int GetHashCode() {
|
---|
| 360 | return tuple.GetHashCode();
|
---|
| 361 | }
|
---|
| 362 |
|
---|
| 363 | public int Size {
|
---|
| 364 | get { return End - Start; }
|
---|
| 365 | }
|
---|
| 366 | }
|
---|
[10396] | 367 | }
|
---|