[5556] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[9708] | 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[5556] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[6709] | 22 | using System;
|
---|
[5556] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
[6981] | 25 | using HeuristicLab.Analysis;
|
---|
[5556] | 26 | using HeuristicLab.Common;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 | using HeuristicLab.Data;
|
---|
| 29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 30 | using HeuristicLab.Optimization;
|
---|
| 31 | using HeuristicLab.Parameters;
|
---|
| 32 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic {
|
---|
| 35 | /// <summary>
|
---|
| 36 | /// Calculates the accumulated frequencies of variable-symbols over all trees in the population.
|
---|
| 37 | /// </summary>
|
---|
| 38 | [Item("SymbolicDataAnalysisVariableFrequencyAnalyzer", "Calculates the accumulated frequencies of variable-symbols over all trees in the population.")]
|
---|
| 39 | [StorableClass]
|
---|
| 40 | public sealed class SymbolicDataAnalysisVariableFrequencyAnalyzer : SymbolicDataAnalysisAnalyzer {
|
---|
| 41 | private const string VariableFrequenciesParameterName = "VariableFrequencies";
|
---|
| 42 | private const string AggregateLaggedVariablesParameterName = "AggregateLaggedVariables";
|
---|
[5748] | 43 | private const string VariableImpactsParameterName = "VariableImpacts";
|
---|
[5556] | 44 |
|
---|
| 45 | #region parameter properties
|
---|
| 46 | public ILookupParameter<DataTable> VariableFrequenciesParameter {
|
---|
| 47 | get { return (ILookupParameter<DataTable>)Parameters[VariableFrequenciesParameterName]; }
|
---|
| 48 | }
|
---|
[5748] | 49 | public ILookupParameter<DoubleMatrix> VariableImpactsParameter {
|
---|
| 50 | get { return (ILookupParameter<DoubleMatrix>)Parameters[VariableImpactsParameterName]; }
|
---|
| 51 | }
|
---|
[5556] | 52 | public IValueLookupParameter<BoolValue> AggregateLaggedVariablesParameter {
|
---|
| 53 | get { return (IValueLookupParameter<BoolValue>)Parameters[AggregateLaggedVariablesParameterName]; }
|
---|
| 54 | }
|
---|
| 55 | #endregion
|
---|
| 56 | #region properties
|
---|
| 57 | public BoolValue AggregateLaggedVariables {
|
---|
| 58 | get { return AggregateLaggedVariablesParameter.ActualValue; }
|
---|
[5748] | 59 | set { AggregateLaggedVariablesParameter.Value = value; }
|
---|
[5556] | 60 | }
|
---|
| 61 | #endregion
|
---|
| 62 | [StorableConstructor]
|
---|
| 63 | private SymbolicDataAnalysisVariableFrequencyAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 64 | private SymbolicDataAnalysisVariableFrequencyAnalyzer(SymbolicDataAnalysisVariableFrequencyAnalyzer original, Cloner cloner)
|
---|
| 65 | : base(original, cloner) {
|
---|
| 66 | }
|
---|
| 67 | public SymbolicDataAnalysisVariableFrequencyAnalyzer()
|
---|
| 68 | : base() {
|
---|
| 69 | Parameters.Add(new LookupParameter<DataTable>(VariableFrequenciesParameterName, "The relative variable reference frequencies aggregated over all trees in the population."));
|
---|
[5748] | 70 | Parameters.Add(new LookupParameter<DoubleMatrix>(VariableImpactsParameterName, "The relative variable relevance calculated as the average relative variable frequency over the whole run."));
|
---|
[5556] | 71 | Parameters.Add(new ValueLookupParameter<BoolValue>(AggregateLaggedVariablesParameterName, "Switch that determines whether all references to a variable should be aggregated regardless of time-offsets. Turn off to analyze all variable references with different time offsets separately.", new BoolValue(true)));
|
---|
| 72 | }
|
---|
[5748] | 73 |
|
---|
[5556] | 74 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 75 | return new SymbolicDataAnalysisVariableFrequencyAnalyzer(this, cloner);
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | public override IOperation Apply() {
|
---|
| 79 | ItemArray<ISymbolicExpressionTree> expressions = SymbolicExpressionTreeParameter.ActualValue;
|
---|
| 80 | ResultCollection results = ResultCollection;
|
---|
[5748] | 81 | DataTable datatable;
|
---|
| 82 | if (VariableFrequenciesParameter.ActualValue == null) {
|
---|
| 83 | datatable = new DataTable("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.");
|
---|
| 84 | datatable.VisualProperties.XAxisTitle = "Generation";
|
---|
| 85 | datatable.VisualProperties.YAxisTitle = "Relative Variable Frequency";
|
---|
| 86 | VariableFrequenciesParameter.ActualValue = datatable;
|
---|
| 87 | results.Add(new Result("Variable frequencies", "Relative frequency of variable references aggregated over the whole population.", datatable));
|
---|
[6811] | 88 | results.Add(new Result("Variable impacts", "The relative variable relevance calculated as the average relative variable frequency over the whole run.", new DoubleMatrix()));
|
---|
[5556] | 89 | }
|
---|
| 90 |
|
---|
[5748] | 91 | datatable = VariableFrequenciesParameter.ActualValue;
|
---|
[5556] | 92 | // all rows must have the same number of values so we can just take the first
|
---|
[5748] | 93 | int numberOfValues = datatable.Rows.Select(r => r.Values.Count).DefaultIfEmpty().First();
|
---|
[5556] | 94 |
|
---|
| 95 | foreach (var pair in SymbolicDataAnalysisVariableFrequencyAnalyzer.CalculateVariableFrequencies(expressions, AggregateLaggedVariables.Value)) {
|
---|
[5748] | 96 | if (!datatable.Rows.ContainsKey(pair.Key)) {
|
---|
[5556] | 97 | // initialize a new row for the variable and pad with zeros
|
---|
| 98 | DataRow row = new DataRow(pair.Key, "", Enumerable.Repeat(0.0, numberOfValues));
|
---|
| 99 | row.VisualProperties.StartIndexZero = true;
|
---|
[5748] | 100 | datatable.Rows.Add(row);
|
---|
[5556] | 101 | }
|
---|
[6709] | 102 | datatable.Rows[pair.Key].Values.Add(Math.Round(pair.Value, 3));
|
---|
[5556] | 103 | }
|
---|
| 104 |
|
---|
| 105 | // add a zero for each data row that was not modified in the previous loop
|
---|
[5748] | 106 | foreach (var row in datatable.Rows.Where(r => r.Values.Count != numberOfValues + 1))
|
---|
[5556] | 107 | row.Values.Add(0.0);
|
---|
| 108 |
|
---|
[5748] | 109 | // update variable impacts matrix
|
---|
| 110 | var orderedImpacts = (from row in datatable.Rows
|
---|
[9126] | 111 | select new { Name = row.Name, Impact = Math.Round(datatable.Rows[row.Name].Values.Average(), 3) })
|
---|
[5748] | 112 | .OrderByDescending(p => p.Impact)
|
---|
| 113 | .ToList();
|
---|
[6811] | 114 | var impacts = new DoubleMatrix();
|
---|
| 115 | var matrix = impacts as IStringConvertibleMatrix;
|
---|
[5748] | 116 | matrix.Rows = orderedImpacts.Count;
|
---|
| 117 | matrix.RowNames = orderedImpacts.Select(x => x.Name);
|
---|
| 118 | matrix.Columns = 1;
|
---|
| 119 | matrix.ColumnNames = new string[] { "Relative variable relevance" };
|
---|
| 120 | int i = 0;
|
---|
| 121 | foreach (var p in orderedImpacts) {
|
---|
| 122 | matrix.SetValue(p.Impact.ToString(), i++, 0);
|
---|
| 123 | }
|
---|
| 124 |
|
---|
[6811] | 125 | VariableImpactsParameter.ActualValue = impacts;
|
---|
| 126 | results["Variable impacts"].Value = impacts;
|
---|
[5556] | 127 | return base.Apply();
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | public static IEnumerable<KeyValuePair<string, double>> CalculateVariableFrequencies(IEnumerable<ISymbolicExpressionTree> trees, bool aggregateLaggedVariables = true) {
|
---|
| 131 |
|
---|
[6728] | 132 | var variableFrequencies = trees
|
---|
| 133 | .AsParallel()
|
---|
| 134 | .SelectMany(t => GetVariableReferences(t, aggregateLaggedVariables))
|
---|
| 135 | .GroupBy(pair => pair.Key, pair => pair.Value)
|
---|
| 136 | .ToDictionary(g => g.Key, g => (double)g.Sum());
|
---|
[5556] | 137 |
|
---|
[6728] | 138 | double totalNumberOfSymbols = variableFrequencies.Values.Sum();
|
---|
| 139 |
|
---|
[6981] | 140 | foreach (var pair in variableFrequencies.OrderBy(p => p.Key, new NaturalStringComparer()))
|
---|
[5556] | 141 | yield return new KeyValuePair<string, double>(pair.Key, pair.Value / totalNumberOfSymbols);
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | private static IEnumerable<KeyValuePair<string, int>> GetVariableReferences(ISymbolicExpressionTree tree, bool aggregateLaggedVariables = true) {
|
---|
| 145 | Dictionary<string, int> references = new Dictionary<string, int>();
|
---|
| 146 | if (aggregateLaggedVariables) {
|
---|
| 147 | tree.Root.ForEachNodePrefix(node => {
|
---|
| 148 | if (node.Symbol is Variable) {
|
---|
| 149 | var varNode = node as VariableTreeNode;
|
---|
| 150 | IncReferenceCount(references, varNode.VariableName);
|
---|
| 151 | } else if (node.Symbol is VariableCondition) {
|
---|
| 152 | var varCondNode = node as VariableConditionTreeNode;
|
---|
| 153 | IncReferenceCount(references, varCondNode.VariableName);
|
---|
| 154 | }
|
---|
| 155 | });
|
---|
| 156 | } else {
|
---|
| 157 | GetVariableReferences(references, tree.Root, 0);
|
---|
| 158 | }
|
---|
| 159 | return references;
|
---|
| 160 | }
|
---|
| 161 |
|
---|
| 162 | private static void GetVariableReferences(Dictionary<string, int> references, ISymbolicExpressionTreeNode node, int currentLag) {
|
---|
| 163 | if (node.Symbol is LaggedVariable) {
|
---|
| 164 | var laggedVarNode = node as LaggedVariableTreeNode;
|
---|
| 165 | IncReferenceCount(references, laggedVarNode.VariableName, currentLag + laggedVarNode.Lag);
|
---|
| 166 | } else if (node.Symbol is Variable) {
|
---|
| 167 | var varNode = node as VariableTreeNode;
|
---|
| 168 | IncReferenceCount(references, varNode.VariableName, currentLag);
|
---|
| 169 | } else if (node.Symbol is VariableCondition) {
|
---|
| 170 | var varCondNode = node as VariableConditionTreeNode;
|
---|
| 171 | IncReferenceCount(references, varCondNode.VariableName, currentLag);
|
---|
[5733] | 172 | GetVariableReferences(references, node.GetSubtree(0), currentLag);
|
---|
| 173 | GetVariableReferences(references, node.GetSubtree(1), currentLag);
|
---|
[5556] | 174 | } else if (node.Symbol is Integral) {
|
---|
| 175 | var laggedNode = node as LaggedTreeNode;
|
---|
| 176 | for (int l = laggedNode.Lag; l <= 0; l++) {
|
---|
[5733] | 177 | GetVariableReferences(references, node.GetSubtree(0), currentLag + l);
|
---|
[5556] | 178 | }
|
---|
| 179 | } else if (node.Symbol is Derivative) {
|
---|
[5924] | 180 | for (int l = -4; l <= 0; l++) {
|
---|
[5733] | 181 | GetVariableReferences(references, node.GetSubtree(0), currentLag + l);
|
---|
[5556] | 182 | }
|
---|
| 183 | } else if (node.Symbol is TimeLag) {
|
---|
| 184 | var laggedNode = node as LaggedTreeNode;
|
---|
[5733] | 185 | GetVariableReferences(references, node.GetSubtree(0), currentLag + laggedNode.Lag);
|
---|
[5922] | 186 | } else {
|
---|
| 187 | foreach (var subtree in node.Subtrees) {
|
---|
| 188 | GetVariableReferences(references, subtree, currentLag);
|
---|
| 189 | }
|
---|
[5556] | 190 | }
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | private static void IncReferenceCount(Dictionary<string, int> references, string variableName, int timeLag = 0) {
|
---|
| 194 | string referenceId = variableName +
|
---|
| 195 | (timeLag == 0 ? "" : timeLag < 0 ? "(t" + timeLag + ")" : "(t+" + timeLag + ")");
|
---|
| 196 | if (references.ContainsKey(referenceId)) {
|
---|
| 197 | references[referenceId]++;
|
---|
| 198 | } else {
|
---|
| 199 | references[referenceId] = 1;
|
---|
| 200 | }
|
---|
| 201 | }
|
---|
| 202 | }
|
---|
| 203 | }
|
---|