[10469] | 1 | using System.Linq;
|
---|
| 2 | using HeuristicLab.Common;
|
---|
| 3 | using HeuristicLab.Core;
|
---|
| 4 | using HeuristicLab.Data;
|
---|
| 5 | using HeuristicLab.Parameters;
|
---|
| 6 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 7 |
|
---|
| 8 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
| 9 | [StorableClass]
|
---|
| 10 | [Item("SymbolicClassificationPruningOperator", "An operator which prunes symbolic classificaton trees.")]
|
---|
| 11 | public class SymbolicClassificationPruningOperator : SymbolicDataAnalysisExpressionPruningOperator {
|
---|
| 12 | private const string ImpactValuesCalculatorParameterName = "ImpactValuesCalculator";
|
---|
| 13 | private const string ModelCreatorParameterName = "ModelCreator";
|
---|
| 14 | private const string ApplyLinearScalingParmameterName = "ApplyLinearScaling";
|
---|
| 15 |
|
---|
| 16 | #region parameter properties
|
---|
| 17 | public ILookupParameter<ISymbolicClassificationModelCreator> ModelCreatorParameter {
|
---|
| 18 | get { return (ILookupParameter<ISymbolicClassificationModelCreator>)Parameters[ModelCreatorParameterName]; }
|
---|
| 19 | }
|
---|
| 20 |
|
---|
| 21 | public ILookupParameter<BoolValue> ApplyLinearScalingParameter {
|
---|
| 22 | get { return (ILookupParameter<BoolValue>)Parameters[ApplyLinearScalingParmameterName]; }
|
---|
| 23 | }
|
---|
| 24 | #endregion
|
---|
| 25 | #region properties
|
---|
| 26 | private ISymbolicClassificationModelCreator ModelCreator { get { return ModelCreatorParameter.ActualValue; } }
|
---|
| 27 | private BoolValue ApplyLinearScaling { get { return ApplyLinearScalingParameter.ActualValue; } }
|
---|
| 28 | #endregion
|
---|
| 29 |
|
---|
[10681] | 30 | protected SymbolicClassificationPruningOperator(SymbolicClassificationPruningOperator
|
---|
| 31 | original, Cloner cloner)
|
---|
[10469] | 32 | : base(original, cloner) {
|
---|
| 33 | }
|
---|
| 34 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 35 | return new SymbolicClassificationPruningOperator(this, cloner);
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | [StorableConstructor]
|
---|
| 39 | protected SymbolicClassificationPruningOperator(bool deserializing) : base(deserializing) { }
|
---|
| 40 |
|
---|
| 41 | public SymbolicClassificationPruningOperator() {
|
---|
| 42 | Parameters.Add(new ValueParameter<ISymbolicDataAnalysisSolutionImpactValuesCalculator>(ImpactValuesCalculatorParameterName, new SymbolicClassificationSolutionImpactValuesCalculator()));
|
---|
| 43 | Parameters.Add(new LookupParameter<ISymbolicClassificationModelCreator>(ModelCreatorParameterName));
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | protected override ISymbolicDataAnalysisModel CreateModel() {
|
---|
| 47 | var model = ModelCreator.CreateSymbolicClassificationModel(SymbolicExpressionTree, Interpreter, EstimationLimits.Lower, EstimationLimits.Upper);
|
---|
| 48 | var rows = Enumerable.Range(FitnessCalculationPartition.Start, FitnessCalculationPartition.Size);
|
---|
| 49 | var problemData = (IClassificationProblemData)ProblemData;
|
---|
| 50 | model.RecalculateModelParameters(problemData, rows);
|
---|
| 51 | return model;
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | protected override double Evaluate(IDataAnalysisModel model) {
|
---|
| 55 | var classificationModel = (IClassificationModel)model;
|
---|
| 56 | var classificationProblemData = (IClassificationProblemData)ProblemData;
|
---|
| 57 | var trainingIndices = ProblemData.TrainingIndices.ToList();
|
---|
| 58 | var estimatedValues = classificationModel.GetEstimatedClassValues(ProblemData.Dataset, trainingIndices);
|
---|
| 59 | var targetValues = ProblemData.Dataset.GetDoubleValues(classificationProblemData.TargetVariable, trainingIndices);
|
---|
| 60 | OnlineCalculatorError errorState;
|
---|
| 61 | var quality = OnlinePearsonsRSquaredCalculator.Calculate(targetValues, estimatedValues, out errorState);
|
---|
| 62 | if (errorState != OnlineCalculatorError.None) return double.NaN;
|
---|
| 63 | return quality;
|
---|
| 64 | }
|
---|
| 65 | }
|
---|
| 66 | }
|
---|