Free cookie consent management tool by TermsFeed Policy Generator

source: branches/SensitivityEvaluator/HeuristicLab.Problems.DataAnalysis/3.4/OnlineCalculators/ClassificationPerformanceMeasuresCalculator.cs @ 16123

Last change on this file since 16123 was 12012, checked in by ascheibe, 10 years ago

#2212 merged r12008, r12009, r12010 back into trunk

File size: 5.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using HeuristicLab.Common;
25
26namespace HeuristicLab.Problems.DataAnalysis {
27  public class ClassificationPerformanceMeasuresCalculator {
28
29    public ClassificationPerformanceMeasuresCalculator(string positiveClassName, double positiveClassValue) {
30      this.positiveClassName = positiveClassName;
31      this.positiveClassValue = positiveClassValue;
32      Reset();
33    }
34
35    #region Properties
36    private int truePositiveCount, falsePositiveCount, trueNegativeCount, falseNegativeCount;
37
38    private readonly string positiveClassName;
39    public string PositiveClassName {
40      get { return positiveClassName; }
41    }
42
43    private readonly double positiveClassValue;
44    public double PositiveClassValue {
45      get { return positiveClassValue; }
46    }
47    public double TruePositiveRate {
48      get {
49        double divisor = truePositiveCount + falseNegativeCount;
50        return divisor.IsAlmost(0) ? double.NaN : truePositiveCount / divisor;
51      }
52    }
53    public double TrueNegativeRate {
54      get {
55        double divisor = falsePositiveCount + trueNegativeCount;
56        return divisor.IsAlmost(0) ? double.NaN : trueNegativeCount / divisor;
57      }
58    }
59    public double PositivePredictiveValue {
60      get {
61        double divisor = truePositiveCount + falsePositiveCount;
62        return divisor.IsAlmost(0) ? double.NaN : truePositiveCount / divisor;
63      }
64    }
65    public double NegativePredictiveValue {
66      get {
67        double divisor = trueNegativeCount + falseNegativeCount;
68        return divisor.IsAlmost(0) ? double.NaN : trueNegativeCount / divisor;
69      }
70    }
71    public double FalsePositiveRate {
72      get {
73        double divisor = falsePositiveCount + trueNegativeCount;
74        return divisor.IsAlmost(0) ? double.NaN : falsePositiveCount / divisor;
75      }
76    }
77    public double FalseDiscoveryRate {
78      get {
79        double divisor = falsePositiveCount + truePositiveCount;
80        return divisor.IsAlmost(0) ? double.NaN : falsePositiveCount / divisor;
81      }
82    }
83
84    private OnlineCalculatorError errorState;
85    public OnlineCalculatorError ErrorState {
86      get { return errorState; }
87    }
88    #endregion
89
90    public void Reset() {
91      truePositiveCount = 0;
92      falseNegativeCount = 0;
93      trueNegativeCount = 0;
94      falseNegativeCount = 0;
95      errorState = OnlineCalculatorError.InsufficientElementsAdded;
96    }
97
98    public void Add(double originalClassValue, double estimatedClassValue) {
99      // ignore cases where original is NaN completely
100      if (double.IsNaN(originalClassValue)) return;
101
102      if (originalClassValue.IsAlmost(positiveClassValue)
103            || estimatedClassValue.IsAlmost(positiveClassValue)) { //positive class/positive class estimation
104        if (estimatedClassValue.IsAlmost(originalClassValue)) {
105          truePositiveCount++;
106        } else {
107          if (estimatedClassValue.IsAlmost(positiveClassValue)) //misclassification of the negative class
108            falsePositiveCount++;
109          else //misclassification of the positive class
110            falseNegativeCount++;
111        }
112      } else { //negative class/negative class estimation
113        //In a multiclass classification all misclassifications of the negative class
114        //will be treated as true negatives except on positive class estimations
115        trueNegativeCount++;
116      }
117
118      errorState = OnlineCalculatorError.None; // number of (non-NaN) samples >= 1
119    }
120
121    public void Calculate(IEnumerable<double> originalClassValues, IEnumerable<double> estimatedClassValues) {
122      IEnumerator<double> originalEnumerator = originalClassValues.GetEnumerator();
123      IEnumerator<double> estimatedEnumerator = estimatedClassValues.GetEnumerator();
124
125      // always move forward both enumerators (do not use short-circuit evaluation!)
126      while (originalEnumerator.MoveNext() & estimatedEnumerator.MoveNext()) {
127        double original = originalEnumerator.Current;
128        double estimated = estimatedEnumerator.Current;
129        Add(original, estimated);
130        if (ErrorState != OnlineCalculatorError.None) break;
131      }
132
133      // check if both enumerators are at the end to make sure both enumerations have the same length
134      if (ErrorState == OnlineCalculatorError.None && (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext())) {
135        throw new ArgumentException("Number of elements in originalValues and estimatedValues enumerations doesn't match.");
136      }
137      errorState = ErrorState;
138    }
139  }
140}
Note: See TracBrowser for help on using the repository browser.