1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Optimization;
|
---|
29 | using HeuristicLab.Optimization.Selection;
|
---|
30 | using HeuristicLab.Parameters;
|
---|
31 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
32 |
|
---|
33 | namespace HeuristicLab.Selection {
|
---|
34 | /// <summary>
|
---|
35 | /// A tournament selection operator which considers a single double quality value for selection.
|
---|
36 | /// </summary>
|
---|
37 | [Item("TournamentSelector", "A tournament selection operator which considers a single double quality value for selection.")]
|
---|
38 | [StorableClass]
|
---|
39 | public sealed class TournamentSelector : StochasticSingleObjectiveSelector, ISingleObjectiveSelector {
|
---|
40 | public ValueLookupParameter<IntValue> GroupSizeParameter {
|
---|
41 | get { return (ValueLookupParameter<IntValue>)Parameters["GroupSize"]; }
|
---|
42 | }
|
---|
43 |
|
---|
44 | [StorableConstructor]
|
---|
45 | private TournamentSelector(bool deserializing) : base(deserializing) { }
|
---|
46 | private TournamentSelector(TournamentSelector original, Cloner cloner) : base(original, cloner) { }
|
---|
47 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
48 | return new TournamentSelector(this, cloner);
|
---|
49 | }
|
---|
50 |
|
---|
51 | public TournamentSelector()
|
---|
52 | : base() {
|
---|
53 | Parameters.Add(new ValueLookupParameter<IntValue>("GroupSize", "The size of the tournament group.", new IntValue(2)));
|
---|
54 | }
|
---|
55 |
|
---|
56 | protected override IScope[] Select(List<IScope> scopes) {
|
---|
57 | int count = NumberOfSelectedSubScopesParameter.ActualValue.Value;
|
---|
58 | bool copy = CopySelectedParameter.Value.Value;
|
---|
59 | IRandom random = RandomParameter.ActualValue;
|
---|
60 | bool maximization = MaximizationParameter.ActualValue.Value;
|
---|
61 | List<double> qualities = QualityParameter.ActualValue.Where(x => IsValidQuality(x.Value)).Select(x => x.Value).ToList();
|
---|
62 | int groupSize = GroupSizeParameter.ActualValue.Value;
|
---|
63 | IScope[] selected = new IScope[count];
|
---|
64 |
|
---|
65 | //check if list with indexes is as long as the original scope list
|
---|
66 | //otherwise invalid quality values were filtered
|
---|
67 | if (qualities.Count != scopes.Count) {
|
---|
68 | throw new ArgumentException("The scopes contain invalid quality values (either infinity or double.NaN) on which the selector cannot operate.");
|
---|
69 | }
|
---|
70 |
|
---|
71 | for (int i = 0; i < count; i++) {
|
---|
72 | int best = random.Next(scopes.Count);
|
---|
73 | int index;
|
---|
74 | for (int j = 1; j < groupSize; j++) {
|
---|
75 | index = random.Next(scopes.Count);
|
---|
76 | if (((maximization) && (qualities[index] > qualities[best])) ||
|
---|
77 | ((!maximization) && (qualities[index] < qualities[best]))) {
|
---|
78 | best = index;
|
---|
79 | }
|
---|
80 | }
|
---|
81 |
|
---|
82 | if (copy)
|
---|
83 | selected[i] = (IScope)scopes[best].Clone();
|
---|
84 | else {
|
---|
85 | selected[i] = scopes[best];
|
---|
86 | scopes.RemoveAt(best);
|
---|
87 | qualities.RemoveAt(best);
|
---|
88 | }
|
---|
89 | }
|
---|
90 | return selected;
|
---|
91 | }
|
---|
92 | }
|
---|
93 |
|
---|
94 | [Item("Tournament Selector", "", ExcludeGenericTypeInfo = true)]
|
---|
95 | [StorableClass]
|
---|
96 | public sealed class TournamentSelector<TContext, TProblem, TEncoding, TSolution> : ParameterizedNamedItem, ISelector<TContext>
|
---|
97 | where TContext : ISingleObjectivePopulationContext<TSolution>, IMatingpoolContext<TSolution>, IStochasticContext,
|
---|
98 | IProblemContext<TProblem, TEncoding, TSolution>
|
---|
99 | where TProblem : class, ISingleObjectiveProblem<TEncoding, TSolution>, ISingleObjectiveProblemDefinition<TEncoding, TSolution>
|
---|
100 | where TEncoding : class, IEncoding<TSolution>
|
---|
101 | where TSolution : class, ISolution {
|
---|
102 |
|
---|
103 | [Storable]
|
---|
104 | private IValueParameter<IntValue> groupSizeParameter;
|
---|
105 | public int GroupSize {
|
---|
106 | get { return groupSizeParameter.Value.Value; }
|
---|
107 | set {
|
---|
108 | if (value < 1) throw new ArgumentException("Cannot use a group size less than 1 in tournament selection.");
|
---|
109 | groupSizeParameter.Value.Value = value;
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 | [StorableConstructor]
|
---|
114 | private TournamentSelector(bool deserializing) : base(deserializing) { }
|
---|
115 | private TournamentSelector(TournamentSelector<TContext, TProblem, TEncoding, TSolution> original, Cloner cloner)
|
---|
116 | : base(original, cloner) {
|
---|
117 | groupSizeParameter = cloner.Clone(groupSizeParameter);
|
---|
118 | }
|
---|
119 | public TournamentSelector() {
|
---|
120 | Parameters.Add(groupSizeParameter = new ValueParameter<IntValue>("GroupSize", "The group size that competes in the tournament.", new IntValue(2)));
|
---|
121 | }
|
---|
122 |
|
---|
123 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
124 | return new TournamentSelector<TContext, TProblem, TEncoding, TSolution>(this, cloner);
|
---|
125 | }
|
---|
126 |
|
---|
127 | public void Select(TContext context, int n, bool withRepetition) {
|
---|
128 | context.MatingPool = Select(context.Random, context.Problem.IsBetter, context.Population, GroupSize, n, withRepetition);
|
---|
129 | }
|
---|
130 |
|
---|
131 | public static IEnumerable<ISingleObjectiveSolutionScope<TSolution>> Select(IRandom random, Func<double, double, bool> isBetterFunc, IEnumerable<ISingleObjectiveSolutionScope<TSolution>> population, int groupSize, int n, bool withRepetition) {
|
---|
132 | var pop = population.Where(x => !double.IsNaN(x.Fitness)).ToList();
|
---|
133 |
|
---|
134 | var i = n;
|
---|
135 | while (i > 0 && pop.Count > 0) {
|
---|
136 | var best = random.Next(pop.Count);
|
---|
137 | for (var j = 1; j < groupSize; j++) {
|
---|
138 | var index = random.Next(pop.Count);
|
---|
139 | if (isBetterFunc(pop[index].Fitness, pop[best].Fitness)) {
|
---|
140 | best = index;
|
---|
141 | }
|
---|
142 | }
|
---|
143 |
|
---|
144 | yield return pop[best];
|
---|
145 | i--;
|
---|
146 | if (!withRepetition) {
|
---|
147 | pop.RemoveAt(i);
|
---|
148 | }
|
---|
149 | }
|
---|
150 | }
|
---|
151 | }
|
---|
152 | }
|
---|