1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Threading;
|
---|
26 | using System.Threading.Tasks;
|
---|
27 | using HeuristicLab.Analysis;
|
---|
28 | using HeuristicLab.Common;
|
---|
29 | using HeuristicLab.Core;
|
---|
30 | using HeuristicLab.Data;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Optimization.Selection;
|
---|
33 | using HeuristicLab.Optimization.Algorithms.SingleObjective;
|
---|
34 | using HeuristicLab.Optimization.Crossover;
|
---|
35 | using HeuristicLab.Optimization.Manipulation;
|
---|
36 | using HeuristicLab.Parameters;
|
---|
37 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
38 |
|
---|
39 | namespace HeuristicLab.Algorithms.GeneticAlgorithm {
|
---|
40 | public class CanonicalGeneticAlgorithm<TProblem, TEncoding, TSolution> : HeuristicAlgorithm<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>, TProblem, TEncoding, TSolution>
|
---|
41 | where TProblem : class, ISingleObjectiveProblem<TEncoding, TSolution>, ISingleObjectiveProblemDefinition<TEncoding, TSolution>
|
---|
42 | where TEncoding : class, IEncoding<TSolution>
|
---|
43 | where TSolution : class, ISolution {
|
---|
44 |
|
---|
45 | [Storable]
|
---|
46 | private IValueParameter<IntValue> populationSize;
|
---|
47 | public int PopulationSize {
|
---|
48 | get { return populationSize.Value.Value; }
|
---|
49 | set {
|
---|
50 | if (value < 2) throw new ArgumentException("PopulationSize cannot be smaller than 2");
|
---|
51 | populationSize.Value.Value = value;
|
---|
52 | }
|
---|
53 | }
|
---|
54 |
|
---|
55 | [Storable]
|
---|
56 | private IConstrainedValueParameter<ISelector<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>> selector;
|
---|
57 | public IConstrainedValueParameter<ISelector<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>> SelectorParameter {
|
---|
58 | get { return selector; }
|
---|
59 | }
|
---|
60 | public ISelector<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>> Selector {
|
---|
61 | get { return selector.Value; }
|
---|
62 | set {
|
---|
63 | if (!selector.ValidValues.Contains(value))
|
---|
64 | selector.ValidValues.Add(value);
|
---|
65 | selector.Value = value;
|
---|
66 | }
|
---|
67 | }
|
---|
68 |
|
---|
69 | [Storable]
|
---|
70 | private IConstrainedValueParameter<ICrossover<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>> crossover;
|
---|
71 | public IConstrainedValueParameter<ICrossover<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>> CrossoverParameter {
|
---|
72 | get { return crossover; }
|
---|
73 | }
|
---|
74 | public ICrossover<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>> Crossover {
|
---|
75 | get { return crossover.Value; }
|
---|
76 | set {
|
---|
77 | if (!crossover.ValidValues.Contains(value))
|
---|
78 | crossover.ValidValues.Add(value);
|
---|
79 | crossover.Value = value;
|
---|
80 | }
|
---|
81 | }
|
---|
82 |
|
---|
83 | [Storable]
|
---|
84 | private IConstrainedValueParameter<IManipulator<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>> mutator;
|
---|
85 | public IConstrainedValueParameter<IManipulator<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>> MutatorParameter {
|
---|
86 | get { return mutator; }
|
---|
87 | }
|
---|
88 | public IManipulator<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>> Mutator {
|
---|
89 | get { return mutator.Value; }
|
---|
90 | set {
|
---|
91 | if (!mutator.ValidValues.Contains(value))
|
---|
92 | mutator.ValidValues.Add(value);
|
---|
93 | mutator.Value = value;
|
---|
94 | }
|
---|
95 | }
|
---|
96 |
|
---|
97 | [Storable]
|
---|
98 | private IValueParameter<PercentValue> mutationProbability;
|
---|
99 | public double MutationProbability {
|
---|
100 | get { return mutationProbability.Value.Value; }
|
---|
101 | set { mutationProbability.Value.Value = value; }
|
---|
102 | }
|
---|
103 |
|
---|
104 | [Storable]
|
---|
105 | private IValueParameter<IntValue> elitism;
|
---|
106 | public int Elitism {
|
---|
107 | get { return elitism.Value.Value; }
|
---|
108 | set {
|
---|
109 | if (value < 0) throw new ArgumentException("Elitism cannot be negative");
|
---|
110 | elitism.Value.Value = value;
|
---|
111 | }
|
---|
112 | }
|
---|
113 |
|
---|
114 | [Storable]
|
---|
115 | protected BestAverageWorstQualityAnalyzer qualityAnalyzer;
|
---|
116 |
|
---|
117 | [StorableConstructor]
|
---|
118 | protected CanonicalGeneticAlgorithm(bool deserializing) : base(deserializing) { }
|
---|
119 | protected CanonicalGeneticAlgorithm(CanonicalGeneticAlgorithm<TProblem, TEncoding, TSolution> original, Cloner cloner)
|
---|
120 | : base(original, cloner) {
|
---|
121 | populationSize = cloner.Clone(original.populationSize);
|
---|
122 | selector = cloner.Clone(original.selector);
|
---|
123 | crossover = cloner.Clone(original.crossover);
|
---|
124 | mutator = cloner.Clone(original.mutator);
|
---|
125 | mutationProbability = cloner.Clone(original.mutationProbability);
|
---|
126 | elitism = cloner.Clone(original.elitism);
|
---|
127 | }
|
---|
128 | public CanonicalGeneticAlgorithm() {
|
---|
129 | ProblemAnalyzer = new MultiAnalyzer();
|
---|
130 | AlgorithmAnalyzer = new MultiAnalyzer();
|
---|
131 | qualityAnalyzer = new BestAverageWorstQualityAnalyzer();
|
---|
132 | AlgorithmAnalyzer.Operators.Add(qualityAnalyzer, true);
|
---|
133 |
|
---|
134 | Parameters.Add(populationSize = new ValueParameter<IntValue>("PopulationSize", "The number of individuals in the population", new IntValue(100)));
|
---|
135 | Parameters.Add(selector = new ConstrainedValueParameter<ISelector<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>>("Selector", "The selection heuristic that creates the mating pool."));
|
---|
136 | Parameters.Add(crossover = new ConstrainedValueParameter<ICrossover<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>>("Crossover", "The crossover heuristic that takes two parents and produces a child."));
|
---|
137 | Parameters.Add(mutator = new ConstrainedValueParameter<IManipulator<EvolutionaryAlgorithmContext<TProblem, TEncoding, TSolution>>>("Mutator", "The mutation heuristic that slightly alters an individual."));
|
---|
138 | Parameters.Add(mutationProbability = new ValueParameter<PercentValue>("MutationProbability", "The probability with which mutation will be applied to an individual after mating.", new PercentValue(0.05)));
|
---|
139 | Parameters.Add(elitism = new ValueParameter<IntValue>("Elitism", "The number of best solutions from the old population that will live in the next generation."));
|
---|
140 | }
|
---|
141 |
|
---|
142 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
143 | return new CanonicalGeneticAlgorithm<TProblem, TEncoding, TSolution>(this, cloner);
|
---|
144 | }
|
---|
145 |
|
---|
146 | protected override void OnProblemChanged() {
|
---|
147 | base.OnProblemChanged();
|
---|
148 | qualityAnalyzer.QualityParameter.ActualName = Problem.Evaluator.QualityParameter.ActualName;
|
---|
149 | qualityAnalyzer.QualityParameter.Depth = 1;
|
---|
150 | qualityAnalyzer.QualityParameter.Hidden = true;
|
---|
151 | }
|
---|
152 |
|
---|
153 | protected override void PerformInitialize(CancellationToken token) {
|
---|
154 | for (var i = 0; i < PopulationSize; i++) {
|
---|
155 | var solutionScope = CreateEmptySolutionScope();
|
---|
156 | Context.Scope.SubScopes.Add(solutionScope);
|
---|
157 | RunOperator(Problem.Encoding.SolutionCreator, solutionScope, token);
|
---|
158 | }
|
---|
159 | EvaluatePopulation(Context.Scope.SubScopes.OfType<ISingleObjectiveSolutionScope<TSolution>>().ToList(), token);
|
---|
160 | }
|
---|
161 |
|
---|
162 | protected override void PerformIterate(CancellationToken token) {
|
---|
163 | Selector.Select(Context, 2 * (PopulationSize - Elitism), true);
|
---|
164 | var pool = Context.MatingPool.ToList();
|
---|
165 |
|
---|
166 | var nextGen = new List<ISingleObjectiveSolutionScope<TSolution>>(PopulationSize);
|
---|
167 | for (var i = 0; i < PopulationSize - Elitism; i++) {
|
---|
168 | Context.Parents = Tuple.Create(pool[2 * i], pool[2 * i + 1]);
|
---|
169 | Context.Child = CreateEmptySolutionScope();
|
---|
170 | Crossover.Cross(Context);
|
---|
171 | if (Context.Random.NextDouble() < MutationProbability)
|
---|
172 | Mutator.Manipulate(Context);
|
---|
173 | nextGen.Add(Context.Child);
|
---|
174 | }
|
---|
175 | EvaluatePopulation(nextGen, token);
|
---|
176 | if (Elitism > 0) {
|
---|
177 | nextGen.AddRange(Problem.Maximization
|
---|
178 | ? Context.Population.OrderByDescending(x => x.Fitness).Take(Elitism)
|
---|
179 | : Context.Population.OrderBy(x => x.Fitness).Take(Elitism));
|
---|
180 | }
|
---|
181 |
|
---|
182 | Context.Scope.SubScopes.Replace(nextGen);
|
---|
183 | Context.Iterations++;
|
---|
184 | }
|
---|
185 |
|
---|
186 | private void EvaluatePopulation(ICollection<ISingleObjectiveSolutionScope<TSolution>> solutions, CancellationToken token) {
|
---|
187 | Parallel.ForEach(solutions, p => Evaluate(p, token));
|
---|
188 | Context.EvaluatedSolutions += solutions.Count;
|
---|
189 | var best = Problem.Maximization ? solutions.MaxItems(x => x.Fitness).First() : solutions.MinItems(x => x.Fitness).First();
|
---|
190 | if (IsBetter(Problem.Maximization, best.Fitness, Context.BestQuality)) {
|
---|
191 | Context.BestQuality = best.Fitness;
|
---|
192 | Context.BestSolution = (TSolution)best.Solution.Clone();
|
---|
193 | }
|
---|
194 | }
|
---|
195 |
|
---|
196 | protected override void PerformAnalyze(CancellationToken token) {
|
---|
197 | base.PerformAnalyze(token);
|
---|
198 |
|
---|
199 | IResult res;
|
---|
200 | if (!Results.TryGetValue("Generations", out res)) {
|
---|
201 | res = new Result("Generations", new IntValue(Context.Iterations));
|
---|
202 | Results.Add(res);
|
---|
203 | } else ((IntValue)res.Value).Value = Context.Iterations;
|
---|
204 | }
|
---|
205 | }
|
---|
206 | }
|
---|