Free cookie consent management tool by TermsFeed Policy Generator

source: branches/Scheduling/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views/3.4/InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView.cs @ 6409

Last change on this file since 6409 was 5993, checked in by gkronber, 14 years ago

#1418 fixed issues in interactive simplifier views for regression and classification solutions regarding automatic folding of nodes without impact on the solution quality and problems with ADFs.

File size: 7.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Drawing;
25using System.Linq;
26using System.Windows.Forms;
27using HeuristicLab.Common;
28using HeuristicLab.MainForm.WindowsForms;
29using HeuristicLab.Problems.DataAnalysis.Symbolic.Views;
30using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
31
32namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification.Views {
33  public partial class InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView : InteractiveSymbolicDataAnalysisSolutionSimplifierView {
34    private readonly ConstantTreeNode constantNode;
35    private readonly SymbolicExpressionTree tempTree;
36
37    public new SymbolicDiscriminantFunctionClassificationSolution Content {
38      get { return (SymbolicDiscriminantFunctionClassificationSolution)base.Content; }
39      set { base.Content = value; }
40    }
41
42    public InteractiveSymbolicDiscriminantFunctionClassificationSolutionSimplifierView()
43      : base() {
44      InitializeComponent();
45      this.Caption = "Interactive Classification Solution Simplifier";
46
47      constantNode = ((ConstantTreeNode)new Constant().CreateTreeNode());
48      ISymbolicExpressionTreeNode root = new ProgramRootSymbol().CreateTreeNode();
49      ISymbolicExpressionTreeNode start = new StartSymbol().CreateTreeNode();
50      root.AddSubtree(start);
51      tempTree = new SymbolicExpressionTree(root);
52    }
53
54    protected override void UpdateModel(ISymbolicExpressionTree tree) {
55      Content.Model = new SymbolicDiscriminantFunctionClassificationModel(tree, Content.Model.Interpreter);
56      Content.SetClassDistibutionCutPointThresholds();
57    }
58
59    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateReplacementValues(ISymbolicExpressionTree tree) {
60      Dictionary<ISymbolicExpressionTreeNode, double> replacementValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
61      foreach (ISymbolicExpressionTreeNode node in tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPrefix()) {
62        replacementValues[node] = CalculateReplacementValue(node, tree);
63      }
64      return replacementValues;
65    }
66
67    protected override Dictionary<ISymbolicExpressionTreeNode, double> CalculateImpactValues(ISymbolicExpressionTree tree) {
68      var interpreter = Content.Model.Interpreter;
69      var dataset = Content.ProblemData.Dataset;
70      var rows = Content.ProblemData.TrainingIndizes;
71      string targetVariable = Content.ProblemData.TargetVariable;
72      Dictionary<ISymbolicExpressionTreeNode, double> impactValues = new Dictionary<ISymbolicExpressionTreeNode, double>();
73      List<ISymbolicExpressionTreeNode> nodes = tree.Root.GetSubtree(0).GetSubtree(0).IterateNodesPostfix().ToList();
74
75      var targetClassValues = dataset.GetEnumeratedVariableValues(targetVariable, rows);
76      var originalOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows)
77        .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit)
78        .ToArray();
79      double[] classValues;
80      double[] thresholds;
81      NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(Content.ProblemData, originalOutput, targetClassValues, out classValues, out thresholds);
82      var classifier = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter);
83      classifier.SetThresholdsAndClassValues(thresholds, classValues);
84      OnlineCalculatorError errorState;
85      double originalAccuracy = OnlineAccuracyCalculator.Calculate(targetClassValues, classifier.GetEstimatedClassValues(dataset, rows), out errorState);
86      if (errorState != OnlineCalculatorError.None) originalAccuracy = 0.0;
87
88      foreach (ISymbolicExpressionTreeNode node in nodes) {
89        var parent = node.Parent;
90        constantNode.Value = CalculateReplacementValue(node, tree);
91        ISymbolicExpressionTreeNode replacementNode = constantNode;
92        SwitchNode(parent, node, replacementNode);
93        var newOutput = interpreter.GetSymbolicExpressionTreeValues(tree, dataset, rows)
94          .LimitToRange(Content.Model.LowerEstimationLimit, Content.Model.UpperEstimationLimit)
95          .ToArray();
96        NormalDistributionCutPointsThresholdCalculator.CalculateThresholds(Content.ProblemData, newOutput, targetClassValues, out classValues, out thresholds);
97        classifier = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter);
98        classifier.SetThresholdsAndClassValues(thresholds, classValues);
99        double newAccuracy = OnlineAccuracyCalculator.Calculate(targetClassValues, classifier.GetEstimatedClassValues(dataset, rows), out errorState);
100        if (errorState != OnlineCalculatorError.None) newAccuracy = 0.0;
101
102        // impact = 0 if no change
103        // impact < 0 if new solution is better
104        // impact > 0 if new solution is worse
105        impactValues[node] = originalAccuracy - newAccuracy;
106        SwitchNode(parent, replacementNode, node);
107      }
108      return impactValues;
109    }
110
111    private double CalculateReplacementValue(ISymbolicExpressionTreeNode node, ISymbolicExpressionTree sourceTree) {
112      // remove old ADFs
113      while (tempTree.Root.SubtreesCount > 1) tempTree.Root.RemoveSubtree(1);
114      // clone ADFs of source tree
115      for (int i = 1; i < sourceTree.Root.SubtreesCount; i++) {
116        tempTree.Root.AddSubtree((ISymbolicExpressionTreeNode)sourceTree.Root.GetSubtree(i).Clone());
117      }
118      var start = tempTree.Root.GetSubtree(0);
119      while (start.SubtreesCount > 0) start.RemoveSubtree(0);
120      start.AddSubtree((ISymbolicExpressionTreeNode)node.Clone());
121      var interpreter = Content.Model.Interpreter;
122      var rows = Content.ProblemData.TrainingIndizes;
123      return interpreter.GetSymbolicExpressionTreeValues(tempTree, Content.ProblemData.Dataset, rows).Median();
124    }
125
126
127    private void SwitchNode(ISymbolicExpressionTreeNode root, ISymbolicExpressionTreeNode oldBranch, ISymbolicExpressionTreeNode newBranch) {
128      for (int i = 0; i < root.SubtreesCount; i++) {
129        if (root.GetSubtree(i) == oldBranch) {
130          root.RemoveSubtree(i);
131          root.InsertSubtree(i, newBranch);
132          return;
133        }
134      }
135    }
136  }
137}
Note: See TracBrowser for help on using the repository browser.