1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Analysis;
|
---|
26 | using HeuristicLab.Common;
|
---|
27 | using HeuristicLab.Core;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
30 | using HeuristicLab.Operators;
|
---|
31 | using HeuristicLab.Optimization;
|
---|
32 | using HeuristicLab.Parameters;
|
---|
33 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
34 | using HeuristicLab.PluginInfrastructure;
|
---|
35 | using HeuristicLab.Problems.DataAnalysis.Evaluators;
|
---|
36 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
37 |
|
---|
38 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic.Analyzers {
|
---|
39 | /// <summary>
|
---|
40 | /// "An operator for analyzing the quality of symbolic regression solutions symbolic expression tree encoding."
|
---|
41 | /// </summary>
|
---|
42 | [Item("SymbolicRegressionModelQualityAnalyzer", "An operator for analyzing the quality of symbolic regression solutions symbolic expression tree encoding.")]
|
---|
43 | [StorableClass]
|
---|
44 | [NonDiscoverableType]
|
---|
45 | public sealed class SymbolicRegressionModelQualityAnalyzer : SingleSuccessorOperator, ISymbolicRegressionAnalyzer {
|
---|
46 | private const string SymbolicExpressionTreeInterpreterParameterName = "SymbolicExpressionTreeInterpreter";
|
---|
47 | private const string SymbolicExpressionTreeParameterName = "SymbolicExpressionTree";
|
---|
48 | private const string ProblemDataParameterName = "ProblemData";
|
---|
49 | private const string ResultsParameterName = "Results";
|
---|
50 |
|
---|
51 | private const string TrainingMeanSquaredErrorQualityParameterName = "Mean squared error (training)";
|
---|
52 | private const string MinTrainingMeanSquaredErrorQualityParameterName = "Min mean squared error (training)";
|
---|
53 | private const string MaxTrainingMeanSquaredErrorQualityParameterName = "Max mean squared error (training)";
|
---|
54 | private const string AverageTrainingMeanSquaredErrorQualityParameterName = "Average mean squared error (training)";
|
---|
55 | private const string BestTrainingMeanSquaredErrorQualityParameterName = "Best mean squared error (training)";
|
---|
56 |
|
---|
57 | private const string TrainingAverageRelativeErrorQualityParameterName = "Average relative error (training)";
|
---|
58 | private const string MinTrainingAverageRelativeErrorQualityParameterName = "Min average relative error (training)";
|
---|
59 | private const string MaxTrainingAverageRelativeErrorQualityParameterName = "Max average relative error (training)";
|
---|
60 | private const string AverageTrainingAverageRelativeErrorQualityParameterName = "Average average relative error (training)";
|
---|
61 | private const string BestTrainingAverageRelativeErrorQualityParameterName = "Best average relative error (training)";
|
---|
62 |
|
---|
63 | private const string TrainingRSquaredQualityParameterName = "R² (training)";
|
---|
64 | private const string MinTrainingRSquaredQualityParameterName = "Min R² (training)";
|
---|
65 | private const string MaxTrainingRSquaredQualityParameterName = "Max R² (training)";
|
---|
66 | private const string AverageTrainingRSquaredQualityParameterName = "Average R² (training)";
|
---|
67 | private const string BestTrainingRSquaredQualityParameterName = "Best R² (training)";
|
---|
68 |
|
---|
69 | private const string TestMeanSquaredErrorQualityParameterName = "Mean squared error (test)";
|
---|
70 | private const string MinTestMeanSquaredErrorQualityParameterName = "Min mean squared error (test)";
|
---|
71 | private const string MaxTestMeanSquaredErrorQualityParameterName = "Max mean squared error (test)";
|
---|
72 | private const string AverageTestMeanSquaredErrorQualityParameterName = "Average mean squared error (test)";
|
---|
73 | private const string BestTestMeanSquaredErrorQualityParameterName = "Best mean squared error (test)";
|
---|
74 |
|
---|
75 | private const string TestAverageRelativeErrorQualityParameterName = "Average relative error (test)";
|
---|
76 | private const string MinTestAverageRelativeErrorQualityParameterName = "Min average relative error (test)";
|
---|
77 | private const string MaxTestAverageRelativeErrorQualityParameterName = "Max average relative error (test)";
|
---|
78 | private const string AverageTestAverageRelativeErrorQualityParameterName = "Average average relative error (test)";
|
---|
79 | private const string BestTestAverageRelativeErrorQualityParameterName = "Best average relative error (test)";
|
---|
80 |
|
---|
81 | private const string TestRSquaredQualityParameterName = "R² (test)";
|
---|
82 | private const string MinTestRSquaredQualityParameterName = "Min R² (test)";
|
---|
83 | private const string MaxTestRSquaredQualityParameterName = "Max R² (test)";
|
---|
84 | private const string AverageTestRSquaredQualityParameterName = "Average R² (test)";
|
---|
85 | private const string BestTestRSquaredQualityParameterName = "Best R² (test)";
|
---|
86 |
|
---|
87 | private const string RSquaredValuesParameterName = "R²";
|
---|
88 | private const string MeanSquaredErrorValuesParameterName = "Mean squared error";
|
---|
89 | private const string RelativeErrorValuesParameterName = "Average relative error";
|
---|
90 |
|
---|
91 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
92 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
93 |
|
---|
94 | #region parameter properties
|
---|
95 | public ScopeTreeLookupParameter<SymbolicExpressionTree> SymbolicExpressionTreeParameter {
|
---|
96 | get { return (ScopeTreeLookupParameter<SymbolicExpressionTree>)Parameters[SymbolicExpressionTreeParameterName]; }
|
---|
97 | }
|
---|
98 | public IValueLookupParameter<ISymbolicExpressionTreeInterpreter> SymbolicExpressionTreeInterpreterParameter {
|
---|
99 | get { return (IValueLookupParameter<ISymbolicExpressionTreeInterpreter>)Parameters[SymbolicExpressionTreeInterpreterParameterName]; }
|
---|
100 | }
|
---|
101 | public IValueLookupParameter<DataAnalysisProblemData> ProblemDataParameter {
|
---|
102 | get { return (IValueLookupParameter<DataAnalysisProblemData>)Parameters[ProblemDataParameterName]; }
|
---|
103 | }
|
---|
104 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
105 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
106 | }
|
---|
107 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
108 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
109 | }
|
---|
110 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
111 | get { return (ILookupParameter<ResultCollection>)Parameters[ResultsParameterName]; }
|
---|
112 | }
|
---|
113 | #endregion
|
---|
114 | #region properties
|
---|
115 | public DoubleValue UpperEstimationLimit {
|
---|
116 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
117 | }
|
---|
118 | public DoubleValue LowerEstimationLimit {
|
---|
119 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
120 | }
|
---|
121 | #endregion
|
---|
122 |
|
---|
123 | [StorableConstructor]
|
---|
124 | private SymbolicRegressionModelQualityAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
125 | private SymbolicRegressionModelQualityAnalyzer(SymbolicRegressionModelQualityAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
126 | public SymbolicRegressionModelQualityAnalyzer()
|
---|
127 | : base() {
|
---|
128 | Parameters.Add(new ScopeTreeLookupParameter<SymbolicExpressionTree>(SymbolicExpressionTreeParameterName, "The symbolic expression trees to analyze."));
|
---|
129 | Parameters.Add(new ValueLookupParameter<ISymbolicExpressionTreeInterpreter>(SymbolicExpressionTreeInterpreterParameterName, "The interpreter that should be used to calculate the output values of the symbolic expression tree."));
|
---|
130 | Parameters.Add(new ValueLookupParameter<DataAnalysisProblemData>(ProblemDataParameterName, "The problem data containing the input varaibles for the symbolic regression problem."));
|
---|
131 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
132 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
133 | Parameters.Add(new ValueLookupParameter<DataTable>(MeanSquaredErrorValuesParameterName, "The data table to collect mean squared error values."));
|
---|
134 | Parameters.Add(new ValueLookupParameter<DataTable>(RSquaredValuesParameterName, "The data table to collect R² correlation coefficient values."));
|
---|
135 | Parameters.Add(new ValueLookupParameter<DataTable>(RelativeErrorValuesParameterName, "The data table to collect relative error values."));
|
---|
136 | Parameters.Add(new LookupParameter<ResultCollection>(ResultsParameterName, "The result collection where the best symbolic regression solution should be stored."));
|
---|
137 | }
|
---|
138 |
|
---|
139 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
140 | return new SymbolicRegressionModelQualityAnalyzer(this, cloner);
|
---|
141 | }
|
---|
142 |
|
---|
143 | public override IOperation Apply() {
|
---|
144 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
145 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
146 | Analyze(SymbolicExpressionTreeParameter.ActualValue, SymbolicExpressionTreeInterpreterParameter.ActualValue,
|
---|
147 | upperEstimationLimit, lowerEstimationLimit, ProblemDataParameter.ActualValue,
|
---|
148 | ResultsParameter.ActualValue);
|
---|
149 | return base.Apply();
|
---|
150 | }
|
---|
151 |
|
---|
152 | public static void Analyze(IEnumerable<SymbolicExpressionTree> trees, ISymbolicExpressionTreeInterpreter interpreter,
|
---|
153 | double upperEstimationLimit, double lowerEstimationLimit,
|
---|
154 | DataAnalysisProblemData problemData, ResultCollection results) {
|
---|
155 | int targetVariableIndex = problemData.Dataset.GetVariableIndex(problemData.TargetVariable.Value);
|
---|
156 | IEnumerable<double> originalTrainingValues = problemData.Dataset.GetEnumeratedVariableValues(targetVariableIndex, problemData.TrainingIndizes);
|
---|
157 | IEnumerable<double> originalTestValues = problemData.Dataset.GetEnumeratedVariableValues(targetVariableIndex, problemData.TestIndizes);
|
---|
158 | List<double> trainingMse = new List<double>();
|
---|
159 | List<double> trainingR2 = new List<double>();
|
---|
160 | List<double> trainingRelErr = new List<double>();
|
---|
161 | List<double> testMse = new List<double>();
|
---|
162 | List<double> testR2 = new List<double>();
|
---|
163 | List<double> testRelErr = new List<double>();
|
---|
164 |
|
---|
165 | OnlineMeanSquaredErrorEvaluator mseEvaluator = new OnlineMeanSquaredErrorEvaluator();
|
---|
166 | OnlineMeanAbsolutePercentageErrorEvaluator relErrEvaluator = new OnlineMeanAbsolutePercentageErrorEvaluator();
|
---|
167 | OnlinePearsonsRSquaredEvaluator r2Evaluator = new OnlinePearsonsRSquaredEvaluator();
|
---|
168 |
|
---|
169 | foreach (var tree in trees) {
|
---|
170 | #region training
|
---|
171 | var estimatedTrainingValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, problemData.TrainingIndizes);
|
---|
172 | mseEvaluator.Reset();
|
---|
173 | r2Evaluator.Reset();
|
---|
174 | relErrEvaluator.Reset();
|
---|
175 | var estimatedEnumerator = estimatedTrainingValues.GetEnumerator();
|
---|
176 | var originalEnumerator = originalTrainingValues.GetEnumerator();
|
---|
177 | while (estimatedEnumerator.MoveNext() & originalEnumerator.MoveNext()) {
|
---|
178 | double estimated = estimatedEnumerator.Current;
|
---|
179 | if (double.IsNaN(estimated)) estimated = upperEstimationLimit;
|
---|
180 | else estimated = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, estimated));
|
---|
181 | mseEvaluator.Add(originalEnumerator.Current, estimated);
|
---|
182 | r2Evaluator.Add(originalEnumerator.Current, estimated);
|
---|
183 | relErrEvaluator.Add(originalEnumerator.Current, estimated);
|
---|
184 | }
|
---|
185 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
|
---|
186 | throw new InvalidOperationException("Number of elements in estimated and original enumeration doesn't match.");
|
---|
187 | }
|
---|
188 | trainingMse.Add(mseEvaluator.MeanSquaredError);
|
---|
189 | trainingR2.Add(r2Evaluator.RSquared);
|
---|
190 | trainingRelErr.Add(relErrEvaluator.MeanAbsolutePercentageError);
|
---|
191 | #endregion
|
---|
192 | #region test
|
---|
193 | var estimatedTestValues = interpreter.GetSymbolicExpressionTreeValues(tree, problemData.Dataset, problemData.TestIndizes);
|
---|
194 |
|
---|
195 | mseEvaluator.Reset();
|
---|
196 | r2Evaluator.Reset();
|
---|
197 | relErrEvaluator.Reset();
|
---|
198 | estimatedEnumerator = estimatedTestValues.GetEnumerator();
|
---|
199 | originalEnumerator = originalTestValues.GetEnumerator();
|
---|
200 | while (estimatedEnumerator.MoveNext() & originalEnumerator.MoveNext()) {
|
---|
201 | double estimated = estimatedEnumerator.Current;
|
---|
202 | if (double.IsNaN(estimated)) estimated = upperEstimationLimit;
|
---|
203 | else estimated = Math.Min(upperEstimationLimit, Math.Max(lowerEstimationLimit, estimated));
|
---|
204 | mseEvaluator.Add(originalEnumerator.Current, estimated);
|
---|
205 | r2Evaluator.Add(originalEnumerator.Current, estimated);
|
---|
206 | relErrEvaluator.Add(originalEnumerator.Current, estimated);
|
---|
207 | }
|
---|
208 | if (estimatedEnumerator.MoveNext() || originalEnumerator.MoveNext()) {
|
---|
209 | throw new InvalidOperationException("Number of elements in estimated and original enumeration doesn't match.");
|
---|
210 | }
|
---|
211 | testMse.Add(mseEvaluator.MeanSquaredError);
|
---|
212 | testR2.Add(r2Evaluator.RSquared);
|
---|
213 | testRelErr.Add(relErrEvaluator.MeanAbsolutePercentageError);
|
---|
214 | #endregion
|
---|
215 | }
|
---|
216 |
|
---|
217 | AddResultTableValues(results, MeanSquaredErrorValuesParameterName, "mean squared error (training)", trainingMse.Min(), trainingMse.Average(), trainingMse.Max());
|
---|
218 | AddResultTableValues(results, MeanSquaredErrorValuesParameterName, "mean squared error (test)", testMse.Min(), testMse.Average(), testMse.Max());
|
---|
219 | AddResultTableValues(results, RelativeErrorValuesParameterName, "mean relative error (training)", trainingRelErr.Min(), trainingRelErr.Average(), trainingRelErr.Max());
|
---|
220 | AddResultTableValues(results, RelativeErrorValuesParameterName, "mean relative error (test)", testRelErr.Min(), testRelErr.Average(), testRelErr.Max());
|
---|
221 | AddResultTableValues(results, RSquaredValuesParameterName, "Pearson's R² (training)", trainingR2.Min(), trainingR2.Average(), trainingR2.Max());
|
---|
222 | AddResultTableValues(results, RSquaredValuesParameterName, "Pearson's R² (test)", testR2.Min(), testR2.Average(), testR2.Max());
|
---|
223 | }
|
---|
224 |
|
---|
225 | private static void AddResultTableValues(ResultCollection results, string tableName, string valueName, double minValue, double avgValue, double maxValue) {
|
---|
226 | if (!results.ContainsKey(tableName)) {
|
---|
227 | results.Add(new Result(tableName, new DataTable(tableName)));
|
---|
228 | }
|
---|
229 | DataTable table = (DataTable)results[tableName].Value;
|
---|
230 | AddValue(table, minValue, "Min. " + valueName, string.Empty);
|
---|
231 | AddValue(table, avgValue, "Avg. " + valueName, string.Empty);
|
---|
232 | AddValue(table, maxValue, "Max. " + valueName, string.Empty);
|
---|
233 | }
|
---|
234 |
|
---|
235 | private static void AddValue(DataTable table, double data, string name, string description) {
|
---|
236 | DataRow row;
|
---|
237 | table.Rows.TryGetValue(name, out row);
|
---|
238 | if (row == null) {
|
---|
239 | row = new DataRow(name, description);
|
---|
240 | row.Values.Add(data);
|
---|
241 | table.Rows.Add(row);
|
---|
242 | } else {
|
---|
243 | row.Values.Add(data);
|
---|
244 | }
|
---|
245 | }
|
---|
246 |
|
---|
247 |
|
---|
248 | private static void SetResultValue(ResultCollection results, string name, double value) {
|
---|
249 | if (results.ContainsKey(name))
|
---|
250 | results[name].Value = new DoubleValue(value);
|
---|
251 | else
|
---|
252 | results.Add(new Result(name, new DoubleValue(value)));
|
---|
253 | }
|
---|
254 | }
|
---|
255 | }
|
---|