1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using HeuristicLab.Common;
|
---|
23 | using HeuristicLab.Core;
|
---|
24 | using HeuristicLab.Data;
|
---|
25 | using HeuristicLab.Parameters;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Encodings.ScheduleEncoding.ScheduleEncoding {
|
---|
29 | [Item("DirectScheduleGTCrossover", "Represents a crossover using the GT-Algorithm to cross two direct schedule representations.")]
|
---|
30 | [StorableClass]
|
---|
31 | public class DirectScheduleGTCrossover : DirectScheduleCrossover {
|
---|
32 | [StorableConstructor]
|
---|
33 | protected DirectScheduleGTCrossover(bool deserializing) : base(deserializing) { }
|
---|
34 | protected DirectScheduleGTCrossover(DirectScheduleGTCrossover original, Cloner cloner)
|
---|
35 | : base(original, cloner) {
|
---|
36 | }
|
---|
37 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
38 | return new DirectScheduleGTCrossover(this, cloner);
|
---|
39 | }
|
---|
40 | public DirectScheduleGTCrossover()
|
---|
41 | : base() {
|
---|
42 | Parameters.Add(new LookupParameter<PercentValue>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
|
---|
43 | }
|
---|
44 |
|
---|
45 |
|
---|
46 | private LookupParameter<PercentValue> MutationProbabilityParameter {
|
---|
47 | get { return (LookupParameter<PercentValue>)Parameters["MutationProbability"]; }
|
---|
48 | }
|
---|
49 |
|
---|
50 |
|
---|
51 | public static Schedule Apply(IRandom random, Schedule parent1, Schedule parent2, ItemList<Job> jobData, double mutProp) {
|
---|
52 | Schedule child = new Schedule(parent1.Resources.Count);
|
---|
53 |
|
---|
54 |
|
---|
55 | //Reset scheduled tasks in result
|
---|
56 | foreach (Job j in jobData) {
|
---|
57 | foreach (Task t in j.Tasks) {
|
---|
58 | t.IsScheduled = false;
|
---|
59 | }
|
---|
60 | }
|
---|
61 |
|
---|
62 | //GT-Algorithm
|
---|
63 | //STEP 0 - Compute a list of "earliest operations"
|
---|
64 | ItemList<Task> earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobData);
|
---|
65 | while (earliestTasksList.Count > 0) {
|
---|
66 | //STEP 1 - Get earliest not scheduled operation with minimal earliest completing time
|
---|
67 | Task minimal = GTAlgorithmUtils.GetTaskWithMinimalEC(earliestTasksList, child);
|
---|
68 | int conflictedResourceNr = minimal.ResourceNr;
|
---|
69 | Resource conflictedResource = child.Resources[conflictedResourceNr];
|
---|
70 |
|
---|
71 | //STEP 2 - Compute a conflict set of all operations that can be scheduled on the conflicted resource
|
---|
72 | ItemList<Task> conflictSet = GTAlgorithmUtils.GetConflictSetForTask(minimal, earliestTasksList, jobData, child);
|
---|
73 |
|
---|
74 | //STEP 3 - Select a task from the conflict set
|
---|
75 | int progressOnResource = conflictedResource.Tasks.Count;
|
---|
76 | Task selectedTask = null;
|
---|
77 | if (random.Next(100) < mutProp) {
|
---|
78 | //Mutation
|
---|
79 | selectedTask = conflictSet[random.Next(conflictSet.Count)];
|
---|
80 | } else {
|
---|
81 | //Crossover
|
---|
82 | selectedTask = SelectTaskFromConflictSet(conflictSet, ((random.Next(2) == 0) ? parent1 : parent2), conflictedResourceNr, progressOnResource);
|
---|
83 | }
|
---|
84 |
|
---|
85 | //STEP 4 - Add the selected task to the current schedule
|
---|
86 | selectedTask.IsScheduled = true;
|
---|
87 | double startTime = GTAlgorithmUtils.ComputeEarliestStartTime(selectedTask, child);
|
---|
88 | child.ScheduleTask(selectedTask.ResourceNr, startTime, selectedTask.Duration, selectedTask.JobNr);
|
---|
89 |
|
---|
90 | //STEP 5 - Back to STEP 1
|
---|
91 | earliestTasksList = GTAlgorithmUtils.GetEarliestNotScheduledTasks(jobData);
|
---|
92 | }
|
---|
93 |
|
---|
94 | return child;
|
---|
95 | }
|
---|
96 |
|
---|
97 |
|
---|
98 | private static Task SelectTaskFromConflictSet(ItemList<Task> conflictSet, Schedule usedParent, int conflictedResourceNr, int progressOnResource) {
|
---|
99 | //Apply Crossover
|
---|
100 | foreach (ScheduledTask st in usedParent.Resources[conflictedResourceNr].Tasks) {
|
---|
101 | foreach (Task t in conflictSet) {
|
---|
102 | if (st.JobNr == t.JobNr)
|
---|
103 | return t;
|
---|
104 | }
|
---|
105 | }
|
---|
106 | return conflictSet[0];
|
---|
107 | }
|
---|
108 |
|
---|
109 |
|
---|
110 | public override Schedule Cross(IRandom random, Schedule parent1, Schedule parent2) {
|
---|
111 | ItemList<Job> jobData = (ItemList<Job>)JobDataParameter.ActualValue.Clone();
|
---|
112 | PercentValue mutProp = MutationProbabilityParameter.ActualValue;
|
---|
113 | return Apply(random, parent1, parent2, jobData, mutProp.Value);
|
---|
114 | }
|
---|
115 | }
|
---|
116 | }
|
---|