[7849] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
| 27 | public class RationalPolynomialThreeDimensional : ArtificialRegressionDataDescriptor {
|
---|
| 28 |
|
---|
[8331] | 29 | public override string Name { get { return "Vladislavleva-5 F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))"; } }
|
---|
[7849] | 30 | public override string Description {
|
---|
| 31 | get {
|
---|
| 32 | return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
|
---|
| 33 | + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
|
---|
[8331] | 34 | + "Function: F5(X1, X2, X3) = 30 * ((X1 - 1) * (X3 -1)) / (X2² * (X1 - 10))" + Environment.NewLine
|
---|
[7849] | 35 | + "Training Data: 300 points X1, X3 = Rand(0.05, 2), X2 = Rand(1, 2)" + Environment.NewLine
|
---|
| 36 | + "Test Data: 2701 points X1, X3 = (-0.05:0.15:2.1), X2 = (0.95:0.1:2.05)" + Environment.NewLine
|
---|
[8331] | 37 | + "Function Set: +, -, *, /, square, x^eps, x + eps, x * eps";
|
---|
[7849] | 38 | }
|
---|
| 39 | }
|
---|
| 40 | protected override string TargetVariable { get { return "Y"; } }
|
---|
| 41 | protected override string[] InputVariables { get { return new string[] { "X1", "X2", "X3", "Y" }; } }
|
---|
| 42 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2", "X3" }; } }
|
---|
| 43 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 44 | protected override int TrainingPartitionEnd { get { return 300; } }
|
---|
| 45 | protected override int TestPartitionStart { get { return 1000; } }
|
---|
| 46 | protected override int TestPartitionEnd { get { return 3700; } }
|
---|
| 47 |
|
---|
| 48 | protected override List<List<double>> GenerateValues() {
|
---|
| 49 | List<List<double>> data = new List<List<double>>();
|
---|
| 50 |
|
---|
[8331] | 51 | int n = 1000;
|
---|
| 52 | data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList());
|
---|
| 53 | data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 1, 2).ToList());
|
---|
| 54 | data.Add(ValueGenerator.GenerateUniformDistributedValues(n, 0.05, 2).ToList());
|
---|
[7849] | 55 |
|
---|
| 56 | List<List<double>> testData = new List<List<double>>() {
|
---|
| 57 | ValueGenerator.GenerateSteps(-0.05, 2.1, 0.15).ToList(),
|
---|
| 58 | ValueGenerator.GenerateSteps( 0.95, 2.05, 0.1).ToList(),
|
---|
| 59 | ValueGenerator.GenerateSteps(-0.05, 2.1, 0.15).ToList()
|
---|
| 60 | };
|
---|
| 61 |
|
---|
| 62 | var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
|
---|
| 63 |
|
---|
| 64 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
| 65 | data[i].AddRange(combinations[i]);
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | double x1, x2, x3;
|
---|
| 69 | List<double> results = new List<double>();
|
---|
| 70 | for (int i = 0; i < data[0].Count; i++) {
|
---|
| 71 | x1 = data[0][i];
|
---|
| 72 | x2 = data[1][i];
|
---|
| 73 | x3 = data[2][i];
|
---|
| 74 | results.Add(30 * ((x1 - 1) * (x3 - 1)) / (Math.Pow(x2, 2) * (x1 - 10)));
|
---|
| 75 | }
|
---|
| 76 | data.Add(results);
|
---|
| 77 |
|
---|
| 78 | return data;
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 | }
|
---|