Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ScatterSearch (trunk integration)/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Various/SpatialCoevolution.cs @ 8086

Last change on this file since 8086 was 8086, checked in by jkarder, 12 years ago

#1331:

  • synced branch with trunk
  • added custom interface (ISimilarityBasedOperator) to mark operators that conduct similarity calculation
  • similarity calculators are now parameterized by the algorithm
  • deleted SolutionPool2TierUpdateMethod
  • deleted KnapsackMultipleGuidesPathRelinker
  • moved IImprovementOperator, IPathRelinker and ISimilarityCalculator to HeuristicLab.Optimization
  • added parameter descriptions
  • fixed plugin references
  • fixed count of EvaluatedSolutions
  • fixed check for duplicate solutions
  • minor code improvements
File size: 3.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.DataAnalysis {
27  public class SpatialCoevolution : ArtificialRegressionDataDescriptor {
28
29    public override string Name { get { return "Spatial co-evolution F(x,y) = 1/(1+power(x,-4)) + 1/(1+pow(y,-4))"; } }
30    public override string Description {
31      get {
32        return "Paper: Evolutionary consequences of coevolving targets" + Environment.NewLine
33        + "Authors: Ludo Pagie and Paulien Hogeweg" + Environment.NewLine
34        + "Function: F(x,y) = 1/(1+power(x,-4)) + 1/(1+pow(y,-4))" + Environment.NewLine
35        + "Terminal set: x, y" + Environment.NewLine
36        + "The fitness of a solution is defined as the mean of the absolute differences between "
37        + "the target function and the solution over all problems on the basis of which it is evaluated. "
38        + "A solution is considered completely ’correct’ if, for all 676 problems in the ’complete’ "
39        + "problem set used in the static evaluation scheme, the absolute difference between "
40        + "solution and target function is less than 0:01 (this is a so-called hit).";
41      }
42    }
43    protected override string TargetVariable { get { return "F"; } }
44    protected override string[] InputVariables { get { return new string[] { "X", "Y", "F" }; } }
45    protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y" }; } }
46    protected override int TrainingPartitionStart { get { return 0; } }
47    protected override int TrainingPartitionEnd { get { return 1000; } }
48    protected override int TestPartitionStart { get { return 1000; } }
49    protected override int TestPartitionEnd { get { return 1676; } }
50
51    protected override List<List<double>> GenerateValues() {
52      List<List<double>> data = new List<List<double>>();
53
54      List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-5, 5, 0.4).ToList();
55      List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
56      var combinations = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
57
58      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
59        data.Add(ValueGenerator.GenerateUniformDistributedValues(1000, -5, 5).ToList());
60        data[i].AddRange(combinations[i]);
61      }
62
63      double x, y;
64      List<double> results = new List<double>();
65      for (int i = 0; i < data[0].Count; i++) {
66        x = data[0][i];
67        y = data[1][i];
68        results.Add(1 / (1 + Math.Pow(x, -4)) + 1 / (1 + Math.Pow(y, -4)));
69      }
70      data.Add(results);
71
72      return data;
73    }
74  }
75}
Note: See TracBrowser for help on using the repository browser.