Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ScatterSearch (trunk integration)/HeuristicLab.Problems.Instances.DataAnalysis/3.3/Regression/Keijzer/KeijzerFunctionSix.cs @ 8086

Last change on this file since 8086 was 8086, checked in by jkarder, 12 years ago

#1331:

  • synced branch with trunk
  • added custom interface (ISimilarityBasedOperator) to mark operators that conduct similarity calculation
  • similarity calculators are now parameterized by the algorithm
  • deleted SolutionPool2TierUpdateMethod
  • deleted KnapsackMultipleGuidesPathRelinker
  • moved IImprovementOperator, IPathRelinker and ISimilarityCalculator to HeuristicLab.Optimization
  • added parameter descriptions
  • fixed plugin references
  • fixed count of EvaluatedSolutions
  • fixed check for duplicate solutions
  • minor code improvements
File size: 3.0 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.DataAnalysis {
27  public class KeijzerFunctionSix : ArtificialRegressionDataDescriptor {
28
29    public override string Name { get { return "Keijzer 6 f(x) = (30 * x * z) / ((x - 10)  * y^2)"; } }
30    public override string Description {
31      get {
32        return "Paper: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling" + Environment.NewLine
33        + "Authors: Maarten Keijzer" + Environment.NewLine
34        + "Function: f(x) = (30 * x * z) / ((x - 10)  * y^2)" + Environment.NewLine
35        + "range(train): 1000 points x,z = rnd(-1, 1), y = rnd(1, 2)" + Environment.NewLine
36        + "range(test): 10000 points x,z = rnd(-1, 1), y = rnd(1, 2)" + Environment.NewLine
37        + "Function Set: x + y, x * y, 1/x, -x, sqrt(x)";
38      }
39    }
40    protected override string TargetVariable { get { return "F"; } }
41    protected override string[] InputVariables { get { return new string[] { "X", "Y", "Z", "F" }; } }
42    protected override string[] AllowedInputVariables { get { return new string[] { "X", "Y", "Z" }; } }
43    protected override int TrainingPartitionStart { get { return 0; } }
44    protected override int TrainingPartitionEnd { get { return 1000; } }
45    protected override int TestPartitionStart { get { return 1000; } }
46    protected override int TestPartitionEnd { get { return 11000; } }
47
48    protected override List<List<double>> GenerateValues() {
49      List<List<double>> data = new List<List<double>>();
50      data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
51      data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 1, 2).ToList());
52      data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -1, 1).ToList());
53
54      double x, y, z;
55      List<double> results = new List<double>();
56      for (int i = 0; i < data[0].Count; i++) {
57        x = data[0][i];
58        y = data[1][i];
59        z = data[2][i];
60        results.Add((30 * x * z) / ((x - 10) * Math.Pow(y, 2)));
61      }
62      data.Add(results);
63
64      return data;
65    }
66  }
67}
Note: See TracBrowser for help on using the repository browser.