Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ScatterSearch (trunk integration)/HeuristicLab.Problems.DataAnalysis.Symbolic.Regression/3.4/SingleObjective/SymbolicRegressionSingleObjectiveProblem.cs @ 8304

Last change on this file since 8304 was 8086, checked in by jkarder, 12 years ago

#1331:

  • synced branch with trunk
  • added custom interface (ISimilarityBasedOperator) to mark operators that conduct similarity calculation
  • similarity calculators are now parameterized by the algorithm
  • deleted SolutionPool2TierUpdateMethod
  • deleted KnapsackMultipleGuidesPathRelinker
  • moved IImprovementOperator, IPathRelinker and ISimilarityCalculator to HeuristicLab.Optimization
  • added parameter descriptions
  • fixed plugin references
  • fixed count of EvaluatedSolutions
  • fixed check for duplicate solutions
  • minor code improvements
File size: 5.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System.Linq;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Parameters;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
29  [Item("Symbolic Regression Problem (single objective)", "Represents a single objective symbolic regression problem.")]
30  [StorableClass]
31  [Creatable("Problems")]
32  public class SymbolicRegressionSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem<IRegressionProblemData, ISymbolicRegressionSingleObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IRegressionProblem {
33    private const double PunishmentFactor = 10;
34    private const int InitialMaximumTreeDepth = 8;
35    private const int InitialMaximumTreeLength = 25;
36    private const string EstimationLimitsParameterName = "EstimationLimits";
37    private const string EstimationLimitsParameterDescription = "The limits for the estimated value that can be returned by the symbolic regression model.";
38
39    #region parameter properties
40    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
41      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
42    }
43    #endregion
44    #region properties
45    public DoubleLimit EstimationLimits {
46      get { return EstimationLimitsParameter.Value; }
47    }
48    #endregion
49    [StorableConstructor]
50    protected SymbolicRegressionSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
51    protected SymbolicRegressionSingleObjectiveProblem(SymbolicRegressionSingleObjectiveProblem original, Cloner cloner) : base(original, cloner) { }
52    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionSingleObjectiveProblem(this, cloner); }
53
54    public SymbolicRegressionSingleObjectiveProblem()
55      : base(new RegressionProblemData(), new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
56      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
57
58      EstimationLimitsParameter.Hidden = true;
59
60      Maximization.Value = true;
61      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
62      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
63
64      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
65
66      ConfigureGrammarSymbols();
67      InitializeOperators();
68      UpdateEstimationLimits();
69    }
70
71    private void ConfigureGrammarSymbols() {
72      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
73      if (grammar != null) grammar.ConfigureAsDefaultRegressionGrammar();
74    }
75
76    private void InitializeOperators() {
77      Operators.Add(new SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer());
78      Operators.Add(new SymbolicRegressionSingleObjectiveValidationBestSolutionAnalyzer());
79      Operators.Add(new SymbolicRegressionSingleObjectiveOverfittingAnalyzer());
80      Operators.Add(new SymbolicRegressionSingleObjectiveTrainingParetoBestSolutionAnalyzer());
81      Operators.Add(new SymbolicRegressionSingleObjectiveValidationParetoBestSolutionAnalyzer());
82
83      ParameterizeOperators();
84    }
85
86    private void UpdateEstimationLimits() {
87      if (ProblemData.TrainingIndizes.Any()) {
88        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToList();
89        var mean = targetValues.Average();
90        var range = targetValues.Max() - targetValues.Min();
91        EstimationLimits.Upper = mean + PunishmentFactor * range;
92        EstimationLimits.Lower = mean - PunishmentFactor * range;
93      } else {
94        EstimationLimits.Upper = double.MaxValue;
95        EstimationLimits.Lower = double.MinValue;
96      }
97    }
98
99    protected override void OnProblemDataChanged() {
100      base.OnProblemDataChanged();
101      UpdateEstimationLimits();
102    }
103
104    protected override void ParameterizeOperators() {
105      base.ParameterizeOperators();
106      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
107        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
108        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
109          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
110        }
111      }
112    }
113  }
114}
Note: See TracBrowser for help on using the repository browser.