[14893] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Threading;
|
---|
| 26 | using HeuristicLab.Algorithms.DataAnalysis;
|
---|
| 27 | using HeuristicLab.Common;
|
---|
| 28 | using HeuristicLab.Core;
|
---|
| 29 | using HeuristicLab.Data;
|
---|
| 30 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
| 31 | using HeuristicLab.Optimization;
|
---|
| 32 | using HeuristicLab.Problems.DataAnalysis;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.Algorithms.SAPBA {
|
---|
| 35 | internal static class EgoUtilities {
|
---|
| 36 | //Extention methods for convenience
|
---|
| 37 | public static int ArgMax<T>(this IEnumerable<T> values, Func<T, double> func) {
|
---|
| 38 | var max = double.MinValue;
|
---|
| 39 | var maxIdx = 0;
|
---|
| 40 | var idx = 0;
|
---|
| 41 | foreach (var v in values) {
|
---|
| 42 | var d = func.Invoke(v);
|
---|
| 43 | if (d > max) {
|
---|
| 44 | max = d;
|
---|
| 45 | maxIdx = idx;
|
---|
| 46 | }
|
---|
| 47 | idx++;
|
---|
| 48 | }
|
---|
| 49 | return maxIdx;
|
---|
| 50 | }
|
---|
| 51 | public static int ArgMin<T>(this IEnumerable<T> values, Func<T, double> func) {
|
---|
| 52 | return ArgMax(values, x => -func.Invoke(x));
|
---|
| 53 | }
|
---|
| 54 | public static double GetEstimation(this IRegressionModel model, RealVector r) {
|
---|
| 55 | var dataset = GetDataSet(new[] { new Tuple<RealVector, double>(r, 0.0) }, false);
|
---|
| 56 | return model.GetEstimatedValues(dataset, new[] { 0 }).First();
|
---|
| 57 | }
|
---|
| 58 | public static double GetVariance(this IConfidenceRegressionModel model, RealVector r) {
|
---|
| 59 | var dataset = GetDataSet(new[] { new Tuple<RealVector, double>(r, 0.0) }, false);
|
---|
| 60 | return model.GetEstimatedVariances(dataset, new[] { 0 }).First();
|
---|
| 61 | }
|
---|
| 62 | public static double GetDoubleValue(this IDataset dataset, int i, int j) {
|
---|
| 63 | return dataset.GetDoubleValue("input" + j, i);
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | //Sub-Algorithms
|
---|
| 67 | public static ResultCollection SyncRunSubAlgorithm(IAlgorithm alg, int random) {
|
---|
| 68 |
|
---|
| 69 | if (alg.Parameters.ContainsKey("SetSeedRandomly") && alg.Parameters.ContainsKey("Seed")) {
|
---|
| 70 | var setSeed = alg.Parameters["SetSeedRandomly"].ActualValue as BoolValue;
|
---|
| 71 | var seed = alg.Parameters["Seed"].ActualValue as IntValue;
|
---|
| 72 | if (seed == null || setSeed == null) throw new ArgumentException("wrong SeedParametertypes");
|
---|
| 73 | setSeed.Value = false;
|
---|
| 74 | seed.Value = random;
|
---|
| 75 |
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 |
|
---|
| 79 | EventWaitHandle trigger = new AutoResetEvent(false);
|
---|
| 80 | Exception ex = null;
|
---|
| 81 | EventHandler<EventArgs<Exception>> exhandler = (sender, e) => ex = e.Value;
|
---|
| 82 | EventHandler stoppedHandler = (sender, e) => trigger.Set();
|
---|
| 83 | alg.ExceptionOccurred += exhandler;
|
---|
| 84 | alg.Stopped += stoppedHandler;
|
---|
| 85 | alg.Prepare();
|
---|
| 86 | alg.Start();
|
---|
| 87 | trigger.WaitOne();
|
---|
| 88 | alg.ExceptionOccurred -= exhandler;
|
---|
| 89 | alg.Stopped -= stoppedHandler;
|
---|
| 90 | if (ex != null) throw ex;
|
---|
| 91 | return alg.Results;
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | public static IRegressionSolution BuildModel(CancellationToken cancellationToken, IEnumerable<Tuple<RealVector, double>> samples, IDataAnalysisAlgorithm<IRegressionProblem> regressionAlgorithm, IRandom random, bool removeDuplicates = true, IRegressionSolution oldSolution = null) {
|
---|
| 95 | var dataset = EgoUtilities.GetDataSet(samples.ToList(), removeDuplicates);
|
---|
| 96 | var problemdata = new RegressionProblemData(dataset, dataset.VariableNames.Where(x => !x.Equals("output")), "output");
|
---|
| 97 | problemdata.TrainingPartition.Start = 0;
|
---|
| 98 | problemdata.TrainingPartition.End = dataset.Rows;
|
---|
| 99 | problemdata.TestPartition.Start = dataset.Rows;
|
---|
| 100 | problemdata.TestPartition.End = dataset.Rows;
|
---|
| 101 |
|
---|
| 102 |
|
---|
| 103 | if (regressionAlgorithm.Problem == null) regressionAlgorithm.Problem = new RegressionProblem();
|
---|
| 104 | var problem = regressionAlgorithm.Problem;
|
---|
| 105 | problem.ProblemDataParameter.Value = problemdata;
|
---|
| 106 | var i = 0;
|
---|
| 107 | IRegressionSolution solution = null;
|
---|
| 108 |
|
---|
| 109 | while (solution == null && i++ < 100) {
|
---|
| 110 | var results = EgoUtilities.SyncRunSubAlgorithm(regressionAlgorithm, random.Next(int.MaxValue));
|
---|
| 111 | solution = results.Select(x => x.Value).OfType<IRegressionSolution>().SingleOrDefault();
|
---|
| 112 | cancellationToken.ThrowIfCancellationRequested();
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | //special treatement for GaussianProcessRegression
|
---|
| 116 | var gp = regressionAlgorithm;
|
---|
| 117 | var oldGaussian = oldSolution as GaussianProcessRegressionSolution;
|
---|
| 118 | if (gp != null && oldGaussian != null) {
|
---|
| 119 | const double noise = 0.0;
|
---|
| 120 | var n = samples.First().Item1.Length;
|
---|
| 121 | var mean = (IMeanFunction)oldGaussian.Model.MeanFunction.Clone();
|
---|
| 122 | var cov = (ICovarianceFunction)oldGaussian.Model.CovarianceFunction.Clone();
|
---|
| 123 | if (mean.GetNumberOfParameters(n) != 0 || cov.GetNumberOfParameters(n) != 0) throw new ArgumentException("DEBUG: assumption about fixed paramters wrong");
|
---|
| 124 | double[] hyp = { noise };
|
---|
| 125 | try {
|
---|
| 126 | var model = new GaussianProcessModel(problemdata.Dataset, problemdata.TargetVariable, problemdata.AllowedInputVariables, problemdata.TrainingIndices, hyp, mean, cov);
|
---|
| 127 | model.FixParameters();
|
---|
| 128 | var sol = new GaussianProcessRegressionSolution(model, problemdata);
|
---|
| 129 | if (solution == null || solution.TrainingMeanSquaredError > sol.TrainingMeanSquaredError) {
|
---|
| 130 | solution = sol;
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 | catch (ArgumentException) { }
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | if (solution == null) throw new ArgumentException("The algorithm didn't return a model");
|
---|
| 137 | regressionAlgorithm.Runs.Clear();
|
---|
| 138 | return solution;
|
---|
| 139 | }
|
---|
| 140 | //RegressionModel extensions
|
---|
| 141 | public const double DuplicateResolution = 0.0001;
|
---|
| 142 | public static Dataset GetDataSet(IReadOnlyList<Tuple<RealVector, double>> samples, bool removeDuplicates) {
|
---|
| 143 | if (removeDuplicates) samples = RemoveDuplicates(samples); //TODO duplicate removal leads to incorrect uncertainty values in models
|
---|
| 144 | var dimensions = samples[0].Item1.Length + 1;
|
---|
| 145 | var data = new double[samples.Count, dimensions];
|
---|
| 146 | var names = new string[dimensions - 1];
|
---|
| 147 | for (var i = 0; i < names.Length; i++) names[i] = "input" + i;
|
---|
| 148 | for (var j = 0; j < samples.Count; j++) {
|
---|
| 149 | for (var i = 0; i < names.Length; i++) data[j, i] = samples[j].Item1[i];
|
---|
| 150 | data[j, dimensions - 1] = samples[j].Item2;
|
---|
| 151 | }
|
---|
| 152 | return new Dataset(names.Concat(new[] { "output" }).ToArray(), data);
|
---|
| 153 | }
|
---|
| 154 | private static IReadOnlyList<Tuple<RealVector, double>> RemoveDuplicates(IReadOnlyList<Tuple<RealVector, double>> samples) {
|
---|
| 155 | var res = new List<Tuple<RealVector, double, int>>();
|
---|
| 156 | foreach (var sample in samples) {
|
---|
| 157 | if (res.Count == 0) {
|
---|
| 158 | res.Add(new Tuple<RealVector, double, int>(sample.Item1, sample.Item2, 1));
|
---|
| 159 | continue;
|
---|
| 160 | }
|
---|
| 161 | var index = res.ArgMin(x => Euclidian(sample.Item1, x.Item1));
|
---|
| 162 | var d = Euclidian(res[index].Item1, sample.Item1);
|
---|
| 163 | if (d > DuplicateResolution)
|
---|
| 164 | res.Add(new Tuple<RealVector, double, int>(sample.Item1, sample.Item2, 1));
|
---|
| 165 | else {
|
---|
| 166 | var t = res[index];
|
---|
| 167 | res.RemoveAt(index);
|
---|
| 168 | res.Add(new Tuple<RealVector, double, int>(t.Item1, t.Item2 + sample.Item2, t.Item3 + 1));
|
---|
| 169 | }
|
---|
| 170 | }
|
---|
| 171 | return res.Select(x => new Tuple<RealVector, double>(x.Item1, x.Item2 / x.Item3)).ToArray();
|
---|
| 172 | }
|
---|
| 173 | private static double Euclidian(IEnumerable<double> a, IEnumerable<double> b) {
|
---|
| 174 | return Math.Sqrt(a.Zip(b, (d, d1) => d - d1).Sum(d => d * d));
|
---|
| 175 | }
|
---|
| 176 | }
|
---|
| 177 | }
|
---|