1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
|
---|
27 | public class SymbolicClassificationSolutionImpactValuesCalculator : SymbolicDataAnalysisSolutionImpactValuesCalculator {
|
---|
28 | public override double CalculateReplacementValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows) {
|
---|
29 | var classificationModel = (ISymbolicClassificationModel)model;
|
---|
30 | var classificationProblemData = (IClassificationProblemData)problemData;
|
---|
31 |
|
---|
32 | return CalculateReplacementValue(node, classificationModel.SymbolicExpressionTree, classificationModel.Interpreter, classificationProblemData.Dataset, rows);
|
---|
33 | }
|
---|
34 |
|
---|
35 | public override double CalculateImpactValue(ISymbolicDataAnalysisModel model, ISymbolicExpressionTreeNode node, IDataAnalysisProblemData problemData, IEnumerable<int> rows, double originalQuality = double.NaN) {
|
---|
36 | var classificationModel = (ISymbolicClassificationModel)model;
|
---|
37 | var classificationProblemData = (IClassificationProblemData)problemData;
|
---|
38 |
|
---|
39 | var dataset = classificationProblemData.Dataset;
|
---|
40 | var targetClassValues = dataset.GetDoubleValues(classificationProblemData.TargetVariable, rows);
|
---|
41 |
|
---|
42 | OnlineCalculatorError errorState;
|
---|
43 | if (double.IsNaN(originalQuality)) {
|
---|
44 | var originalClassValues = classificationModel.GetEstimatedClassValues(dataset, rows);
|
---|
45 | originalQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, originalClassValues, out errorState);
|
---|
46 | if (errorState != OnlineCalculatorError.None) originalQuality = 0.0;
|
---|
47 | }
|
---|
48 |
|
---|
49 | var replacementValue = CalculateReplacementValue(classificationModel, node, classificationProblemData, rows);
|
---|
50 | var constantNode = new ConstantTreeNode(new Constant()) { Value = replacementValue };
|
---|
51 | var cloner = new Cloner();
|
---|
52 | cloner.RegisterClonedObject(node, constantNode);
|
---|
53 | var tempModel = cloner.Clone(classificationModel);
|
---|
54 | tempModel.RecalculateModelParameters(classificationProblemData, rows);
|
---|
55 |
|
---|
56 | var estimatedClassValues = tempModel.GetEstimatedClassValues(dataset, rows);
|
---|
57 | double newQuality = OnlineAccuracyCalculator.Calculate(targetClassValues, estimatedClassValues, out errorState);
|
---|
58 | if (errorState != OnlineCalculatorError.None) newQuality = 0.0;
|
---|
59 |
|
---|
60 | return originalQuality - newQuality;
|
---|
61 | }
|
---|
62 |
|
---|
63 | }
|
---|
64 | }
|
---|