1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Linq;
|
---|
24 | using HeuristicLab.Common;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
29 | /// <summary>
|
---|
30 | /// Represents a classification solution that uses a discriminant function and classification thresholds.
|
---|
31 | /// </summary>
|
---|
32 | [StorableClass]
|
---|
33 | [Item("DiscriminantFunctionClassificationSolution", "Represents a classification solution that uses a discriminant function and classification thresholds.")]
|
---|
34 | public abstract class DiscriminantFunctionClassificationSolution : DiscriminantFunctionClassificationSolutionBase {
|
---|
35 | protected readonly Dictionary<int, double> valueEvaluationCache;
|
---|
36 | protected readonly Dictionary<int, double> classValueEvaluationCache;
|
---|
37 |
|
---|
38 | [StorableConstructor]
|
---|
39 | protected DiscriminantFunctionClassificationSolution(bool deserializing)
|
---|
40 | : base(deserializing) {
|
---|
41 | valueEvaluationCache = new Dictionary<int, double>();
|
---|
42 | classValueEvaluationCache = new Dictionary<int, double>();
|
---|
43 | }
|
---|
44 | protected DiscriminantFunctionClassificationSolution(DiscriminantFunctionClassificationSolution original, Cloner cloner)
|
---|
45 | : base(original, cloner) {
|
---|
46 | valueEvaluationCache = new Dictionary<int, double>(original.valueEvaluationCache);
|
---|
47 | classValueEvaluationCache = new Dictionary<int, double>(original.classValueEvaluationCache);
|
---|
48 | }
|
---|
49 | protected DiscriminantFunctionClassificationSolution(IDiscriminantFunctionClassificationModel model, IClassificationProblemData problemData)
|
---|
50 | : base(model, problemData) {
|
---|
51 | valueEvaluationCache = new Dictionary<int, double>();
|
---|
52 | classValueEvaluationCache = new Dictionary<int, double>();
|
---|
53 |
|
---|
54 | SetAccuracyMaximizingThresholds();
|
---|
55 | }
|
---|
56 |
|
---|
57 | public override IEnumerable<double> EstimatedClassValues {
|
---|
58 | get { return GetEstimatedClassValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
59 | }
|
---|
60 | public override IEnumerable<double> EstimatedTrainingClassValues {
|
---|
61 | get { return GetEstimatedClassValues(ProblemData.TrainingIndizes); }
|
---|
62 | }
|
---|
63 | public override IEnumerable<double> EstimatedTestClassValues {
|
---|
64 | get { return GetEstimatedClassValues(ProblemData.TestIndizes); }
|
---|
65 | }
|
---|
66 |
|
---|
67 | public override IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows) {
|
---|
68 | var rowsToEvaluate = rows.Except(classValueEvaluationCache.Keys);
|
---|
69 | var rowsEnumerator = rowsToEvaluate.GetEnumerator();
|
---|
70 | var valuesEnumerator = Model.GetEstimatedClassValues(ProblemData.Dataset, rowsToEvaluate).GetEnumerator();
|
---|
71 |
|
---|
72 | while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
|
---|
73 | classValueEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
|
---|
74 | }
|
---|
75 |
|
---|
76 | return rows.Select(row => classValueEvaluationCache[row]);
|
---|
77 | }
|
---|
78 |
|
---|
79 |
|
---|
80 | public override IEnumerable<double> EstimatedValues {
|
---|
81 | get { return GetEstimatedValues(Enumerable.Range(0, ProblemData.Dataset.Rows)); }
|
---|
82 | }
|
---|
83 | public override IEnumerable<double> EstimatedTrainingValues {
|
---|
84 | get { return GetEstimatedValues(ProblemData.TrainingIndizes); }
|
---|
85 | }
|
---|
86 | public override IEnumerable<double> EstimatedTestValues {
|
---|
87 | get { return GetEstimatedValues(ProblemData.TestIndizes); }
|
---|
88 | }
|
---|
89 |
|
---|
90 | public override IEnumerable<double> GetEstimatedValues(IEnumerable<int> rows) {
|
---|
91 | var rowsToEvaluate = rows.Except(valueEvaluationCache.Keys);
|
---|
92 | var rowsEnumerator = rowsToEvaluate.GetEnumerator();
|
---|
93 | var valuesEnumerator = Model.GetEstimatedValues(ProblemData.Dataset, rowsToEvaluate).GetEnumerator();
|
---|
94 |
|
---|
95 | while (rowsEnumerator.MoveNext() & valuesEnumerator.MoveNext()) {
|
---|
96 | valueEvaluationCache.Add(rowsEnumerator.Current, valuesEnumerator.Current);
|
---|
97 | }
|
---|
98 |
|
---|
99 | return rows.Select(row => valueEvaluationCache[row]);
|
---|
100 | }
|
---|
101 |
|
---|
102 | protected override void OnModelChanged() {
|
---|
103 | valueEvaluationCache.Clear();
|
---|
104 | classValueEvaluationCache.Clear();
|
---|
105 | base.OnModelChanged();
|
---|
106 | }
|
---|
107 | protected override void OnModelThresholdsChanged(System.EventArgs e) {
|
---|
108 | classValueEvaluationCache.Clear();
|
---|
109 | base.OnModelThresholdsChanged(e);
|
---|
110 | }
|
---|
111 | protected override void OnProblemDataChanged() {
|
---|
112 | valueEvaluationCache.Clear();
|
---|
113 | classValueEvaluationCache.Clear();
|
---|
114 | base.OnProblemDataChanged();
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|