Free cookie consent management tool by TermsFeed Policy Generator

source: branches/RegressionBenchmarks/HeuristicLab.Problems.DataAnalysis.Benchmarks/3.4/RegressionGenerator/RegressionBenchmark.cs @ 7403

Last change on this file since 7403 was 7336, checked in by sforsten, 13 years ago

#1669:

  • bug fixed in RegressionBenchmark
  • adapted trainings partitions of some benchmark problems
File size: 4.1 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using HeuristicLab.Common;
26using HeuristicLab.Data;
27using HeuristicLab.Random;
28
29namespace HeuristicLab.Problems.DataAnalysis.Benchmarks {
30  public abstract class RegressionBenchmark : Benchmark, IRegressionBenchmarkProblemDataGenerator {
31
32    #region properties
33    protected string targetVariable;
34    protected List<string> inputVariables;
35    protected IntRange trainingPartition;
36    protected IntRange testPartition;
37
38    public string TargetVariable {
39      get { return targetVariable; }
40    }
41
42    public List<string> InputVariable {
43      get { return inputVariables; }
44    }
45
46    public IntRange TrainingPartition {
47      get { return trainingPartition; }
48    }
49
50    public IntRange TestPartition {
51      get { return testPartition; }
52    }
53    #endregion
54
55    protected static FastRandom rand = new FastRandom();
56
57    protected RegressionBenchmark() { }
58    protected RegressionBenchmark(RegressionBenchmark original, Cloner cloner)
59      : base(original, cloner) {
60    }
61
62    public abstract IDataAnalysisProblemData GenerateProblemData();
63
64    public static List<double> GenerateSteps(DoubleRange range, double stepWidth) {
65      return Enumerable.Range(0, (int)Math.Round(((range.End - range.Start) / stepWidth) + 1))
66                                      .Select(i => (range.Start + i * stepWidth))
67                                      .ToList<double>();
68    }
69
70    public static List<double> GenerateUniformDistributedValues(int amount, DoubleRange range) {
71      List<double> values = new List<double>();
72      for (int i = 0; i < amount; i++) {
73        values.Add(rand.NextDouble() * (range.End - range.Start) + range.Start);
74      }
75      return values;
76    }
77
78    public static List<double> GenerateNormalDistributedValues(int amount, double mu, double sigma) {
79      List<double> values = new List<double>();
80      for (int i = 0; i < amount; i++) {
81        values.Add(NormalDistributedRandom.NextDouble(rand, mu, sigma));
82      }
83      return values;
84    }
85
86    public static List<List<double>> GenerateAllCombinationsOfValuesInLists(List<List<double>> sets) {
87
88      var combinations = new List<List<double>>();
89
90      foreach (var value in sets[0])
91        combinations.Add(new List<double> { value });
92
93      foreach (var set in sets.Skip(1))
94        combinations = AddListToCombinations(combinations, set);
95
96      combinations = (from i in Enumerable.Range(0, sets.Count)
97                      select (from list in combinations
98                              select list.ElementAt(i)).ToList<double>()).ToList<List<double>>();
99
100      return combinations;
101    }
102
103    private static List<List<double>> AddListToCombinations
104         (List<List<double>> combinations, List<double> set) {
105      var newCombinations = from value in set
106                            from combination in combinations
107                            select new List<double>(combination) { value };
108
109      return newCombinations.ToList();
110    }
111
112    public static List<double> GenerateUniformIntegerDistribution(List<int> classes, int amount) {
113      List<double> values = new List<double>();
114      for (int i = 0; i < amount; i++) {
115        values.Add(rand.Next(0, classes.Count));
116      }
117      return values;
118    }
119  }
120}
Note: See TracBrowser for help on using the repository browser.