[7127] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[7336] | 22 | using System;
|
---|
[7127] | 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 | using HeuristicLab.Random;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis.Benchmarks {
|
---|
| 30 | public abstract class RegressionBenchmark : Benchmark, IRegressionBenchmarkProblemDataGenerator {
|
---|
| 31 |
|
---|
| 32 | #region properties
|
---|
| 33 | protected string targetVariable;
|
---|
| 34 | protected List<string> inputVariables;
|
---|
| 35 | protected IntRange trainingPartition;
|
---|
| 36 | protected IntRange testPartition;
|
---|
| 37 |
|
---|
| 38 | public string TargetVariable {
|
---|
| 39 | get { return targetVariable; }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public List<string> InputVariable {
|
---|
| 43 | get { return inputVariables; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | public IntRange TrainingPartition {
|
---|
| 47 | get { return trainingPartition; }
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public IntRange TestPartition {
|
---|
| 51 | get { return testPartition; }
|
---|
| 52 | }
|
---|
| 53 | #endregion
|
---|
| 54 |
|
---|
| 55 | protected static FastRandom rand = new FastRandom();
|
---|
| 56 |
|
---|
| 57 | protected RegressionBenchmark() { }
|
---|
| 58 | protected RegressionBenchmark(RegressionBenchmark original, Cloner cloner)
|
---|
| 59 | : base(original, cloner) {
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | public abstract IDataAnalysisProblemData GenerateProblemData();
|
---|
| 63 |
|
---|
| 64 | public static List<double> GenerateSteps(DoubleRange range, double stepWidth) {
|
---|
[7336] | 65 | return Enumerable.Range(0, (int)Math.Round(((range.End - range.Start) / stepWidth) + 1))
|
---|
[7127] | 66 | .Select(i => (range.Start + i * stepWidth))
|
---|
| 67 | .ToList<double>();
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | public static List<double> GenerateUniformDistributedValues(int amount, DoubleRange range) {
|
---|
| 71 | List<double> values = new List<double>();
|
---|
| 72 | for (int i = 0; i < amount; i++) {
|
---|
| 73 | values.Add(rand.NextDouble() * (range.End - range.Start) + range.Start);
|
---|
| 74 | }
|
---|
| 75 | return values;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | public static List<double> GenerateNormalDistributedValues(int amount, double mu, double sigma) {
|
---|
| 79 | List<double> values = new List<double>();
|
---|
| 80 | for (int i = 0; i < amount; i++) {
|
---|
| 81 | values.Add(NormalDistributedRandom.NextDouble(rand, mu, sigma));
|
---|
| 82 | }
|
---|
| 83 | return values;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | public static List<List<double>> GenerateAllCombinationsOfValuesInLists(List<List<double>> sets) {
|
---|
| 87 |
|
---|
| 88 | var combinations = new List<List<double>>();
|
---|
| 89 |
|
---|
| 90 | foreach (var value in sets[0])
|
---|
| 91 | combinations.Add(new List<double> { value });
|
---|
| 92 |
|
---|
| 93 | foreach (var set in sets.Skip(1))
|
---|
| 94 | combinations = AddListToCombinations(combinations, set);
|
---|
| 95 |
|
---|
| 96 | combinations = (from i in Enumerable.Range(0, sets.Count)
|
---|
| 97 | select (from list in combinations
|
---|
| 98 | select list.ElementAt(i)).ToList<double>()).ToList<List<double>>();
|
---|
| 99 |
|
---|
| 100 | return combinations;
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | private static List<List<double>> AddListToCombinations
|
---|
| 104 | (List<List<double>> combinations, List<double> set) {
|
---|
| 105 | var newCombinations = from value in set
|
---|
| 106 | from combination in combinations
|
---|
| 107 | select new List<double>(combination) { value };
|
---|
| 108 |
|
---|
| 109 | return newCombinations.ToList();
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | public static List<double> GenerateUniformIntegerDistribution(List<int> classes, int amount) {
|
---|
| 113 | List<double> values = new List<double>();
|
---|
| 114 | for (int i = 0; i < amount; i++) {
|
---|
| 115 | values.Add(rand.Next(0, classes.Count));
|
---|
| 116 | }
|
---|
| 117 | return values;
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 | }
|
---|