1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections;
|
---|
24 | using System.Collections.Generic;
|
---|
25 | using System.Linq;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis.Benchmarks {
|
---|
29 | public class HighSenseampDelay : RegressionRealWorldBenchmark {
|
---|
30 |
|
---|
31 | private const string fileName = "senseamp_delay.csv";
|
---|
32 |
|
---|
33 | public HighSenseampDelay() {
|
---|
34 | Name = "McConaghy High senseamp_delay";
|
---|
35 | Description = "Paper: Deterministic Symbolic Regression Technology, Genetic Programming Theory and Practice IX" + Environment.NewLine
|
---|
36 | + "High-Dimensional Statistical Modeling and Analysis of Custom Integrated Circuits" + Environment.NewLine
|
---|
37 | + "Authors: T. McConaghy" + Environment.NewLine
|
---|
38 | + "Website: http://trent.st/ffx/";
|
---|
39 | }
|
---|
40 |
|
---|
41 | protected override List<IList> GetData() {
|
---|
42 | csvFileParser = Benchmark.getParserForFile(fileName);
|
---|
43 |
|
---|
44 | targetVariable = csvFileParser.VariableNames.First();
|
---|
45 | inputVariables = new List<string>(csvFileParser.VariableNames.Skip(1));
|
---|
46 | int trainingPartEnd = csvFileParser.Rows * 2 / 3;
|
---|
47 | trainingPartition = new IntRange(0, trainingPartEnd);
|
---|
48 | testPartition = new IntRange(trainingPartEnd, csvFileParser.Rows);
|
---|
49 |
|
---|
50 | return csvFileParser.Values;
|
---|
51 | }
|
---|
52 | }
|
---|
53 | }
|
---|