1 | #region License Information |
---|
2 | /* HeuristicLab |
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL) |
---|
4 | * |
---|
5 | * This file is part of HeuristicLab. |
---|
6 | * |
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify |
---|
8 | * it under the terms of the GNU General Public License as published by |
---|
9 | * the Free Software Foundation, either version 3 of the License, or |
---|
10 | * (at your option) any later version. |
---|
11 | * |
---|
12 | * HeuristicLab is distributed in the hope that it will be useful, |
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
---|
15 | * GNU General Public License for more details. |
---|
16 | * |
---|
17 | * You should have received a copy of the GNU General Public License |
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>. |
---|
19 | */ |
---|
20 | #endregion |
---|
21 | |
---|
22 | using System; |
---|
23 | using System.Collections.Generic; |
---|
24 | using System.Linq; |
---|
25 | using HeuristicLab.Common; |
---|
26 | using HeuristicLab.Core; |
---|
27 | using HeuristicLab.Data; |
---|
28 | using HeuristicLab.Optimization; |
---|
29 | using HeuristicLab.Parameters; |
---|
30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; |
---|
31 | using HeuristicLab.Problems.DataAnalysis; |
---|
32 | |
---|
33 | namespace HeuristicLab.Algorithms.DataAnalysis { |
---|
34 | /// <summary> |
---|
35 | /// k-Means clustering algorithm data analysis algorithm. |
---|
36 | /// </summary> |
---|
37 | [Item("k-Means", "The k-Means clustering algorithm (wrapper for ALGLIB).")] |
---|
38 | [Creatable(CreatableAttribute.Categories.DataAnalysis, Priority = 10)] |
---|
39 | [StorableClass] |
---|
40 | public sealed class KMeansClustering : FixedDataAnalysisAlgorithm<IClusteringProblem> { |
---|
41 | private const string KParameterName = "k"; |
---|
42 | private const string RestartsParameterName = "Restarts"; |
---|
43 | private const string KMeansSolutionResultName = "k-Means clustering solution"; |
---|
44 | #region parameter properties |
---|
45 | public IValueParameter<IntValue> KParameter { |
---|
46 | get { return (IValueParameter<IntValue>)Parameters[KParameterName]; } |
---|
47 | } |
---|
48 | public IValueParameter<IntValue> RestartsParameter { |
---|
49 | get { return (IValueParameter<IntValue>)Parameters[RestartsParameterName]; } |
---|
50 | } |
---|
51 | #endregion |
---|
52 | #region properties |
---|
53 | public IntValue K { |
---|
54 | get { return KParameter.Value; } |
---|
55 | } |
---|
56 | public IntValue Restarts { |
---|
57 | get { return RestartsParameter.Value; } |
---|
58 | } |
---|
59 | #endregion |
---|
60 | [StorableConstructor] |
---|
61 | private KMeansClustering(bool deserializing) : base(deserializing) { } |
---|
62 | private KMeansClustering(KMeansClustering original, Cloner cloner) |
---|
63 | : base(original, cloner) { |
---|
64 | } |
---|
65 | public KMeansClustering() |
---|
66 | : base() { |
---|
67 | Parameters.Add(new ValueParameter<IntValue>(KParameterName, "The number of clusters.", new IntValue(3))); |
---|
68 | Parameters.Add(new ValueParameter<IntValue>(RestartsParameterName, "The number of restarts.", new IntValue(0))); |
---|
69 | Problem = new ClusteringProblem(); |
---|
70 | } |
---|
71 | [StorableHook(HookType.AfterDeserialization)] |
---|
72 | private void AfterDeserialization() { } |
---|
73 | |
---|
74 | public override IDeepCloneable Clone(Cloner cloner) { |
---|
75 | return new KMeansClustering(this, cloner); |
---|
76 | } |
---|
77 | |
---|
78 | #region k-Means clustering |
---|
79 | protected override void Run() { |
---|
80 | var solution = CreateKMeansSolution(Problem.ProblemData, K.Value, Restarts.Value); |
---|
81 | Results.Add(new Result(KMeansSolutionResultName, "The k-Means clustering solution.", solution)); |
---|
82 | } |
---|
83 | |
---|
84 | public static KMeansClusteringSolution CreateKMeansSolution(IClusteringProblemData problemData, int k, int restarts) { |
---|
85 | var dataset = problemData.Dataset; |
---|
86 | IEnumerable<string> allowedInputVariables = problemData.AllowedInputVariables; |
---|
87 | IEnumerable<int> rows = problemData.TrainingIndices; |
---|
88 | int info; |
---|
89 | double[,] centers; |
---|
90 | int[] xyc; |
---|
91 | double[,] inputMatrix = AlglibUtil.PrepareInputMatrix(dataset, allowedInputVariables, rows); |
---|
92 | if (inputMatrix.Cast<double>().Any(x => double.IsNaN(x) || double.IsInfinity(x))) |
---|
93 | throw new NotSupportedException("k-Means clustering does not support NaN or infinity values in the input dataset."); |
---|
94 | |
---|
95 | alglib.kmeansgenerate(inputMatrix, inputMatrix.GetLength(0), inputMatrix.GetLength(1), k, restarts + 1, out info, out centers, out xyc); |
---|
96 | if (info != 1) throw new ArgumentException("Error in calculation of k-Means clustering solution"); |
---|
97 | |
---|
98 | KMeansClusteringSolution solution = new KMeansClusteringSolution(new KMeansClusteringModel(centers, allowedInputVariables), (IClusteringProblemData)problemData.Clone()); |
---|
99 | return solution; |
---|
100 | } |
---|
101 | #endregion |
---|
102 | } |
---|
103 | } |
---|