[14386] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 |
|
---|
[14887] | 27 | namespace HeuristicLab.Algorithms.DataAnalysis.KernelRidgeRegression {
|
---|
[14386] | 28 | [StorableClass]
|
---|
[14887] | 29 | // conditionally positive definite. (need to add polynomials) see http://num.math.uni-goettingen.de/schaback/teaching/sc.pdf
|
---|
| 30 | [Item("ThinPlatePolysplineKernel", "A kernel function that uses the ThinPlatePolyspline function ||x-c||^(2*Beta)*log(||x-c||^Beta)")]
|
---|
[14872] | 31 | public class ThinPlatePolysplineKernel : KernelBase {
|
---|
[14386] | 32 | #region HLConstructors & Boilerplate
|
---|
| 33 | [StorableConstructor]
|
---|
| 34 | protected ThinPlatePolysplineKernel(bool deserializing) : base(deserializing) { }
|
---|
| 35 | [StorableHook(HookType.AfterDeserialization)]
|
---|
| 36 | private void AfterDeserialization() { }
|
---|
[14872] | 37 | protected ThinPlatePolysplineKernel(ThinPlatePolysplineKernel original, Cloner cloner) : base(original, cloner) { }
|
---|
[14386] | 38 | public ThinPlatePolysplineKernel() {
|
---|
| 39 | }
|
---|
| 40 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
[14872] | 41 | return new ThinPlatePolysplineKernel(this, cloner);
|
---|
[14386] | 42 | }
|
---|
| 43 | #endregion
|
---|
| 44 |
|
---|
| 45 | protected override double Get(double norm) {
|
---|
[14887] | 46 | var beta = Beta.Value;
|
---|
| 47 | if (Math.Pow(norm, beta) < 0) return double.NaN;
|
---|
| 48 | return Math.Pow(norm, 2 * beta) * Math.Log(1 + Math.Pow(norm, beta));
|
---|
[14386] | 49 | }
|
---|
| 50 |
|
---|
| 51 | protected override double GetGradient(double norm) {
|
---|
[14887] | 52 | var beta = Beta.Value;
|
---|
| 53 | if (Math.Pow(norm, beta) <= 0) return double.NaN;
|
---|
| 54 | return 2 * Math.Log(norm) * Math.Pow(norm, 2 * beta) * Math.Log(1 + Math.Pow(norm, beta)) + Math.Pow(norm, 3 * beta) * Math.Log(norm) / (Math.Pow(norm, beta) + 1);
|
---|
[14386] | 55 | }
|
---|
| 56 | }
|
---|
| 57 | }
|
---|