1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
26 | using HeuristicLab.Random;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.Instances.QAPGenerator {
|
---|
29 | [Item("Beta-distributed random number generator", "Creates random numbers that are distributed according to the beta distribution.")]
|
---|
30 | [StorableClass]
|
---|
31 | public sealed class BetaDistributedRandom : Item, IRandom {
|
---|
32 | private double alpha, beta, minimum, maximum;
|
---|
33 |
|
---|
34 | [Storable]
|
---|
35 | public double Alpha {
|
---|
36 | get { return alpha; }
|
---|
37 | set { alpha = value; }
|
---|
38 | }
|
---|
39 |
|
---|
40 | [Storable]
|
---|
41 | public double Beta {
|
---|
42 | get { return beta; }
|
---|
43 | set { beta = value; }
|
---|
44 | }
|
---|
45 |
|
---|
46 | [Storable]
|
---|
47 | public double Minimum {
|
---|
48 | get { return minimum; }
|
---|
49 | set { minimum = value; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | [Storable]
|
---|
53 | public double Maximum {
|
---|
54 | get { return maximum; }
|
---|
55 | set { maximum = value; }
|
---|
56 | }
|
---|
57 |
|
---|
58 | [Storable]
|
---|
59 | private IRandom uniform;
|
---|
60 |
|
---|
61 | [Storable]
|
---|
62 | private IRandom normal;
|
---|
63 |
|
---|
64 | [StorableConstructor]
|
---|
65 | private BetaDistributedRandom(bool deserializing) : base(deserializing) { }
|
---|
66 | private BetaDistributedRandom(BetaDistributedRandom original, Cloner cloner)
|
---|
67 | : base(original, cloner) {
|
---|
68 | this.alpha = original.alpha;
|
---|
69 | this.beta = original.beta;
|
---|
70 | this.uniform = cloner.Clone(uniform);
|
---|
71 | }
|
---|
72 | public BetaDistributedRandom() : this(new MersenneTwister(), 5, 5) { }
|
---|
73 | public BetaDistributedRandom(IRandom uniform, double alpha, double beta) : this(uniform, alpha, beta, 0, 1) { }
|
---|
74 | public BetaDistributedRandom(IRandom uniform, double alpha, double beta, double minimum, double maximum) {
|
---|
75 | if (alpha.IsAlmost(0) || beta.IsAlmost(0)) throw new ArgumentException("Alpha or Beta must be greater than 0.");
|
---|
76 | this.uniform = uniform;
|
---|
77 | this.normal = new NormalDistributedRandom(uniform, 0, 1);
|
---|
78 | this.alpha = alpha;
|
---|
79 | this.beta = beta;
|
---|
80 | this.minimum = minimum;
|
---|
81 | this.maximum = maximum;
|
---|
82 | }
|
---|
83 |
|
---|
84 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
85 | return new BetaDistributedRandom(this, cloner);
|
---|
86 | }
|
---|
87 |
|
---|
88 | public void Reset() {
|
---|
89 | uniform.Reset();
|
---|
90 | }
|
---|
91 |
|
---|
92 | public void Reset(int seed) {
|
---|
93 | uniform.Reset(seed);
|
---|
94 | }
|
---|
95 |
|
---|
96 | public int Next() {
|
---|
97 | throw new NotImplementedException();
|
---|
98 | }
|
---|
99 |
|
---|
100 | public int Next(int maxVal) {
|
---|
101 | throw new NotImplementedException();
|
---|
102 | }
|
---|
103 |
|
---|
104 | public int Next(int minVal, int maxVal) {
|
---|
105 | throw new NotImplementedException();
|
---|
106 | }
|
---|
107 |
|
---|
108 | public double NextDouble() {
|
---|
109 | if ((alpha <= 1.0) && (beta <= 1.0)) {
|
---|
110 | // Use Jonk's algorithm
|
---|
111 | while (true) {
|
---|
112 | var x = Math.Pow(uniform.NextDouble(), 1.0 / alpha);
|
---|
113 | var y = Math.Pow(uniform.NextDouble(), 1.0 / beta);
|
---|
114 | if ((x + y) <= 1.0) return minimum + (maximum - minimum) * (x / (x + y));
|
---|
115 | }
|
---|
116 | }
|
---|
117 | var Ga = NextDoubleGammaDistributed(alpha);
|
---|
118 | var Gb = NextDoubleGammaDistributed(beta);
|
---|
119 | return minimum + (maximum - minimum) * (Ga / (Ga + Gb));
|
---|
120 | }
|
---|
121 |
|
---|
122 | private double NextDoubleGammaDistributed(double shape) {
|
---|
123 | double u, v, x;
|
---|
124 |
|
---|
125 | if (shape.IsAlmost(1.0))
|
---|
126 | return -Math.Log(1.0 - uniform.NextDouble());
|
---|
127 |
|
---|
128 | if (shape < 1.0) {
|
---|
129 | while (true) {
|
---|
130 | u = uniform.NextDouble();
|
---|
131 | v = -Math.Log(1.0 - uniform.NextDouble());
|
---|
132 | if (u <= 1.0 - shape) {
|
---|
133 | x = Math.Pow(u, 1.0 / shape);
|
---|
134 | if (x <= v) return x;
|
---|
135 | } else {
|
---|
136 | var y = -Math.Log((1 - u) / shape);
|
---|
137 | x = Math.Pow(1.0 - shape + shape * y, 1.0 / shape);
|
---|
138 | if (x <= (v + y)) return x;
|
---|
139 | }
|
---|
140 | }
|
---|
141 | }
|
---|
142 | // shape > 1.0
|
---|
143 | var b = shape - 1.0 / 3.0;
|
---|
144 | var c = 1.0 / Math.Sqrt(9 * b);
|
---|
145 | for (; ; ) {
|
---|
146 | do {
|
---|
147 | x = normal.NextDouble();
|
---|
148 | v = 1.0 + c * x;
|
---|
149 | } while (v <= 0.0);
|
---|
150 |
|
---|
151 | v = v * v * v;
|
---|
152 | u = uniform.NextDouble();
|
---|
153 | if (u < 1.0 - 0.0331 * (x * x) * (x * x)) return (b * v);
|
---|
154 | if (Math.Log(u) < 0.5 * x * x + b * (1.0 - v + Math.Log(v))) return (b * v);
|
---|
155 | }
|
---|
156 | }
|
---|
157 | }
|
---|
158 | }
|
---|