[14704] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.Instances.QAPGenerator {
|
---|
| 29 | [Item("Beta-distributed random number generator", "Creates random numbers that are distributed according to the beta distribution.")]
|
---|
| 30 | [StorableClass]
|
---|
| 31 | public sealed class BetaDistributedRandom : Item, IRandom {
|
---|
| 32 | private double alpha, beta, minimum, maximum;
|
---|
| 33 |
|
---|
| 34 | [Storable]
|
---|
| 35 | public double Alpha {
|
---|
| 36 | get { return alpha; }
|
---|
| 37 | set { alpha = value; }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | [Storable]
|
---|
| 41 | public double Beta {
|
---|
| 42 | get { return beta; }
|
---|
| 43 | set { beta = value; }
|
---|
| 44 | }
|
---|
| 45 |
|
---|
| 46 | [Storable]
|
---|
| 47 | public double Minimum {
|
---|
| 48 | get { return minimum; }
|
---|
| 49 | set { minimum = value; }
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | [Storable]
|
---|
| 53 | public double Maximum {
|
---|
| 54 | get { return maximum; }
|
---|
| 55 | set { maximum = value; }
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | [Storable]
|
---|
| 59 | private IRandom uniform;
|
---|
| 60 |
|
---|
| 61 | [Storable]
|
---|
| 62 | private IRandom normal;
|
---|
| 63 |
|
---|
| 64 | [StorableConstructor]
|
---|
| 65 | private BetaDistributedRandom(bool deserializing) : base(deserializing) { }
|
---|
| 66 | private BetaDistributedRandom(BetaDistributedRandom original, Cloner cloner)
|
---|
| 67 | : base(original, cloner) {
|
---|
| 68 | this.alpha = original.alpha;
|
---|
| 69 | this.beta = original.beta;
|
---|
| 70 | this.uniform = cloner.Clone(uniform);
|
---|
| 71 | }
|
---|
| 72 | public BetaDistributedRandom() : this(new MersenneTwister(), 5, 5) { }
|
---|
| 73 | public BetaDistributedRandom(IRandom uniform, double alpha, double beta) : this(uniform, alpha, beta, 0, 1) { }
|
---|
| 74 | public BetaDistributedRandom(IRandom uniform, double alpha, double beta, double minimum, double maximum) {
|
---|
| 75 | if (alpha.IsAlmost(0) || beta.IsAlmost(0)) throw new ArgumentException("Alpha or Beta must be greater than 0.");
|
---|
| 76 | this.uniform = uniform;
|
---|
| 77 | this.normal = new NormalDistributedRandom(uniform, 0, 1);
|
---|
| 78 | this.alpha = alpha;
|
---|
| 79 | this.beta = beta;
|
---|
| 80 | this.minimum = minimum;
|
---|
| 81 | this.maximum = maximum;
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 85 | return new BetaDistributedRandom(this, cloner);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | public void Reset() {
|
---|
| 89 | uniform.Reset();
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | public void Reset(int seed) {
|
---|
| 93 | uniform.Reset(seed);
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | public int Next() {
|
---|
| 97 | throw new NotImplementedException();
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 | public int Next(int maxVal) {
|
---|
| 101 | throw new NotImplementedException();
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | public int Next(int minVal, int maxVal) {
|
---|
| 105 | throw new NotImplementedException();
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | public double NextDouble() {
|
---|
| 109 | if ((alpha <= 1.0) && (beta <= 1.0)) {
|
---|
| 110 | // Use Jonk's algorithm
|
---|
| 111 | while (true) {
|
---|
| 112 | var x = Math.Pow(uniform.NextDouble(), 1.0 / alpha);
|
---|
| 113 | var y = Math.Pow(uniform.NextDouble(), 1.0 / beta);
|
---|
| 114 | if ((x + y) <= 1.0) return minimum + (maximum - minimum) * (x / (x + y));
|
---|
| 115 | }
|
---|
| 116 | }
|
---|
| 117 | var Ga = NextDoubleGammaDistributed(alpha);
|
---|
| 118 | var Gb = NextDoubleGammaDistributed(beta);
|
---|
| 119 | return minimum + (maximum - minimum) * (Ga / (Ga + Gb));
|
---|
| 120 | }
|
---|
| 121 |
|
---|
| 122 | private double NextDoubleGammaDistributed(double shape) {
|
---|
| 123 | double u, v, x;
|
---|
| 124 |
|
---|
| 125 | if (shape.IsAlmost(1.0))
|
---|
| 126 | return -Math.Log(1.0 - uniform.NextDouble());
|
---|
| 127 |
|
---|
| 128 | if (shape < 1.0) {
|
---|
| 129 | while (true) {
|
---|
| 130 | u = uniform.NextDouble();
|
---|
| 131 | v = -Math.Log(1.0 - uniform.NextDouble());
|
---|
| 132 | if (u <= 1.0 - shape) {
|
---|
| 133 | x = Math.Pow(u, 1.0 / shape);
|
---|
| 134 | if (x <= v) return x;
|
---|
| 135 | } else {
|
---|
| 136 | var y = -Math.Log((1 - u) / shape);
|
---|
| 137 | x = Math.Pow(1.0 - shape + shape * y, 1.0 / shape);
|
---|
| 138 | if (x <= (v + y)) return x;
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 | }
|
---|
| 142 | // shape > 1.0
|
---|
| 143 | var b = shape - 1.0 / 3.0;
|
---|
| 144 | var c = 1.0 / Math.Sqrt(9 * b);
|
---|
| 145 | for (; ; ) {
|
---|
| 146 | do {
|
---|
| 147 | x = normal.NextDouble();
|
---|
| 148 | v = 1.0 + c * x;
|
---|
| 149 | } while (v <= 0.0);
|
---|
| 150 |
|
---|
| 151 | v = v * v * v;
|
---|
| 152 | u = uniform.NextDouble();
|
---|
| 153 | if (u < 1.0 - 0.0331 * (x * x) * (x * x)) return (b * v);
|
---|
| 154 | if (Math.Log(u) < 0.5 * x * x + b * (1.0 - v + Math.Log(v))) return (b * v);
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 | }
|
---|
| 158 | }
|
---|