1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Data;
|
---|
24 |
|
---|
25 | namespace HeuristicLab.Analysis {
|
---|
26 | public static class MultidimensionalScaling {
|
---|
27 |
|
---|
28 | /// <summary>
|
---|
29 | /// Performs the Kruskal-Shepard algorithm and applies a gradient descent method
|
---|
30 | /// to fit the coordinates such that the difference between the fit distances
|
---|
31 | /// and the actual distances is minimal.
|
---|
32 | /// </summary>
|
---|
33 | /// <param name="distances">A symmetric NxN matrix that specifies the distances between each element i and j. Diagonal elements are ignored.</param>
|
---|
34 | /// <param name="stress">Returns the stress between the fit distances and the actual distances.</param>
|
---|
35 | /// <returns>A Nx2 matrix where the first column represents the x- and the second column the y coordinates.</returns>
|
---|
36 | public static DoubleMatrix MetricByDistance(DoubleMatrix distances, out double stress) {
|
---|
37 | if (distances == null) throw new ArgumentNullException("distances");
|
---|
38 | if (distances.Rows != distances.Columns) throw new ArgumentException("Distance matrix must be a square matrix.", "distances");
|
---|
39 | stress = 0.0;
|
---|
40 |
|
---|
41 | int dimension = distances.Rows;
|
---|
42 | if (dimension == 1) return new DoubleMatrix(new double[,] { { 0, 0 } });
|
---|
43 | else if (dimension == 2) return new DoubleMatrix(new double[,] { { 0, distances[0, 1] } });
|
---|
44 |
|
---|
45 | DoubleMatrix coordinates = new DoubleMatrix(dimension, 2);
|
---|
46 | double rad = (2 * Math.PI) / coordinates.Rows;
|
---|
47 | for (int i = 0; i < dimension; i++) {
|
---|
48 | coordinates[i, 0] = 10 * Math.Cos(rad * i);
|
---|
49 | coordinates[i, 1] = 10 * Math.Sin(rad * i);
|
---|
50 | }
|
---|
51 |
|
---|
52 | return MetricByDistance(distances, out stress, coordinates);
|
---|
53 | }
|
---|
54 |
|
---|
55 | public static DoubleMatrix MetricByDistance(DoubleMatrix distances, out double stress, DoubleMatrix coordinates) {
|
---|
56 | int dimension = distances.Rows;
|
---|
57 | if (dimension != distances.Columns || coordinates.Rows != dimension) throw new ArgumentException("distances or coordinates");
|
---|
58 |
|
---|
59 | stress = 0.0;
|
---|
60 | double epsg = 1e-7;
|
---|
61 | double epsf = 0;
|
---|
62 | double epsx = 0;
|
---|
63 | int maxits = 1000;
|
---|
64 | alglib.mincgstate state = null;
|
---|
65 | alglib.mincgreport rep;
|
---|
66 |
|
---|
67 | for (int iterations = 0; iterations < 20; iterations++) {
|
---|
68 | for (int i = 0; i < dimension; i++) {
|
---|
69 | double[] c = new double[] { coordinates[i, 0], coordinates[i, 1] };
|
---|
70 |
|
---|
71 | if (iterations == 0 && i == 0) {
|
---|
72 | alglib.mincgcreate(c, out state);
|
---|
73 | alglib.mincgsetcond(state, epsg, epsf, epsx, maxits);
|
---|
74 | } else {
|
---|
75 | alglib.mincgrestartfrom(state, c);
|
---|
76 | }
|
---|
77 | alglib.mincgoptimize(state, StressGradient, null, new Info(coordinates, distances, i));
|
---|
78 | alglib.mincgresults(state, out c, out rep);
|
---|
79 |
|
---|
80 | coordinates[i, 0] = c[0];
|
---|
81 | coordinates[i, 1] = c[1];
|
---|
82 | }
|
---|
83 | }
|
---|
84 | stress = CalculateNormalizedStress(dimension, distances, coordinates);
|
---|
85 | return coordinates;
|
---|
86 | }
|
---|
87 |
|
---|
88 | private static void StressGradient(double[] x, ref double func, double[] grad, object obj) {
|
---|
89 | func = 0; grad[0] = 0; grad[1] = 0;
|
---|
90 | Info info = (obj as Info);
|
---|
91 | for (int i = 0; i < info.Coordinates.Rows; i++) {
|
---|
92 | double c = info.Distances[info.Row, i];
|
---|
93 | if (i != info.Row) {
|
---|
94 | double a = info.Coordinates[i, 0];
|
---|
95 | double b = info.Coordinates[i, 1];
|
---|
96 | func += Stress(x, c, a, b);
|
---|
97 | grad[0] += ((2 * x[0] - 2 * a) * Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a) - 2 * c * x[0] + 2 * a * c) / Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a);
|
---|
98 | grad[1] += ((2 * x[1] - 2 * b) * Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a) - 2 * c * x[1] + 2 * b * c) / Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a);
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|
102 |
|
---|
103 | private static double Stress(double[] x, double distance, double xCoord, double yCoord) {
|
---|
104 | return Stress(x[0], x[1], distance, xCoord, yCoord);
|
---|
105 | }
|
---|
106 |
|
---|
107 | private static double Stress(double x, double y, double distance, double otherX, double otherY) {
|
---|
108 | double d = Math.Sqrt((x - otherX) * (x - otherX)
|
---|
109 | + (y - otherY) * (y - otherY));
|
---|
110 | return (d - distance) * (d - distance);
|
---|
111 | }
|
---|
112 |
|
---|
113 | public static double CalculateNormalizedStress(int dimension, DoubleMatrix distances, DoubleMatrix coordinates) {
|
---|
114 | double stress = 0;
|
---|
115 | for (int i = 0; i < dimension - 1; i++) {
|
---|
116 | for (int j = i + 1; j < dimension; j++) {
|
---|
117 | if (distances[i, j] != 0) {
|
---|
118 | stress += Stress(coordinates[i, 0], coordinates[i, 1], distances[i, j], coordinates[j, 0], coordinates[j, 1])
|
---|
119 | / (distances[i, j] * distances[i, j]);
|
---|
120 | }
|
---|
121 | }
|
---|
122 | }
|
---|
123 | return stress;
|
---|
124 | }
|
---|
125 |
|
---|
126 | private class Info {
|
---|
127 | public DoubleMatrix Coordinates { get; set; }
|
---|
128 | public DoubleMatrix Distances { get; set; }
|
---|
129 | public int Row { get; set; }
|
---|
130 |
|
---|
131 | public Info(DoubleMatrix c, DoubleMatrix d, int r) {
|
---|
132 | Coordinates = c;
|
---|
133 | Distances = d;
|
---|
134 | Row = r;
|
---|
135 | }
|
---|
136 | }
|
---|
137 | }
|
---|
138 | } |
---|