[5723] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using HeuristicLab.Data;
|
---|
| 24 |
|
---|
| 25 | namespace HeuristicLab.Analysis {
|
---|
| 26 | public static class MultidimensionalScaling {
|
---|
| 27 |
|
---|
| 28 | /// <summary>
|
---|
| 29 | /// Performs the Kruskal-Shepard algorithm and applies a gradient descent method
|
---|
| 30 | /// to fit the coordinates such that the difference between the fit distances
|
---|
| 31 | /// and the actual distances is minimal.
|
---|
| 32 | /// </summary>
|
---|
| 33 | /// <param name="distances">A symmetric NxN matrix that specifies the distances between each element i and j. Diagonal elements are ignored.</param>
|
---|
| 34 | /// <param name="stress">Returns the stress between the fit distances and the actual distances.</param>
|
---|
| 35 | /// <returns>A Nx2 matrix where the first column represents the x- and the second column the y coordinates.</returns>
|
---|
| 36 | public static DoubleMatrix MetricByDistance(DoubleMatrix distances, out double stress) {
|
---|
| 37 | if (distances == null) throw new ArgumentNullException("distances");
|
---|
| 38 | if (distances.Rows != distances.Columns) throw new ArgumentException("Distance matrix must be a square matrix.", "distances");
|
---|
| 39 | stress = 0.0;
|
---|
| 40 |
|
---|
| 41 | int dimension = distances.Rows;
|
---|
| 42 | if (dimension == 1) return new DoubleMatrix(new double[,] { { 0, 0 } });
|
---|
| 43 | else if (dimension == 2) return new DoubleMatrix(new double[,] { { 0, distances[0, 1] } });
|
---|
| 44 |
|
---|
| 45 | DoubleMatrix coordinates = new DoubleMatrix(dimension, 2);
|
---|
| 46 | double rad = (2 * Math.PI) / coordinates.Rows;
|
---|
| 47 | for (int i = 0; i < dimension; i++) {
|
---|
| 48 | coordinates[i, 0] = 10 * Math.Cos(rad * i);
|
---|
| 49 | coordinates[i, 1] = 10 * Math.Sin(rad * i);
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | return MetricByDistance(distances, out stress, coordinates);
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | public static DoubleMatrix MetricByDistance(DoubleMatrix distances, out double stress, DoubleMatrix coordinates) {
|
---|
| 56 | int dimension = distances.Rows;
|
---|
| 57 | if (dimension != distances.Columns || coordinates.Rows != dimension) throw new ArgumentException("distances or coordinates");
|
---|
| 58 |
|
---|
| 59 | stress = 0.0;
|
---|
| 60 | double epsg = 1e-7;
|
---|
| 61 | double epsf = 0;
|
---|
| 62 | double epsx = 0;
|
---|
| 63 | int maxits = 1000;
|
---|
| 64 | alglib.mincgstate state = null;
|
---|
| 65 | alglib.mincgreport rep;
|
---|
| 66 |
|
---|
| 67 | for (int iterations = 0; iterations < 20; iterations++) {
|
---|
| 68 | for (int i = 0; i < dimension; i++) {
|
---|
| 69 | double[] c = new double[] { coordinates[i, 0], coordinates[i, 1] };
|
---|
| 70 |
|
---|
| 71 | if (iterations == 0 && i == 0) {
|
---|
| 72 | alglib.mincgcreate(c, out state);
|
---|
| 73 | alglib.mincgsetcond(state, epsg, epsf, epsx, maxits);
|
---|
| 74 | } else {
|
---|
| 75 | alglib.mincgrestartfrom(state, c);
|
---|
| 76 | }
|
---|
| 77 | alglib.mincgoptimize(state, StressGradient, null, new Info(coordinates, distances, i));
|
---|
| 78 | alglib.mincgresults(state, out c, out rep);
|
---|
| 79 |
|
---|
| 80 | coordinates[i, 0] = c[0];
|
---|
| 81 | coordinates[i, 1] = c[1];
|
---|
| 82 | }
|
---|
| 83 | }
|
---|
| 84 | stress = CalculateNormalizedStress(dimension, distances, coordinates);
|
---|
| 85 | return coordinates;
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | private static void StressGradient(double[] x, ref double func, double[] grad, object obj) {
|
---|
| 89 | func = 0; grad[0] = 0; grad[1] = 0;
|
---|
| 90 | Info info = (obj as Info);
|
---|
| 91 | for (int i = 0; i < info.Coordinates.Rows; i++) {
|
---|
| 92 | double c = info.Distances[info.Row, i];
|
---|
| 93 | if (i != info.Row) {
|
---|
| 94 | double a = info.Coordinates[i, 0];
|
---|
| 95 | double b = info.Coordinates[i, 1];
|
---|
| 96 | func += Stress(x, c, a, b);
|
---|
| 97 | grad[0] += ((2 * x[0] - 2 * a) * Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a) - 2 * c * x[0] + 2 * a * c) / Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a);
|
---|
| 98 | grad[1] += ((2 * x[1] - 2 * b) * Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a) - 2 * c * x[1] + 2 * b * c) / Math.Sqrt(x[1] * x[1] - 2 * b * x[1] + x[0] * x[0] - 2 * a * x[0] + b * b + a * a);
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | private static double Stress(double[] x, double distance, double xCoord, double yCoord) {
|
---|
| 104 | return Stress(x[0], x[1], distance, xCoord, yCoord);
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | private static double Stress(double x, double y, double distance, double otherX, double otherY) {
|
---|
| 108 | double d = Math.Sqrt((x - otherX) * (x - otherX)
|
---|
| 109 | + (y - otherY) * (y - otherY));
|
---|
| 110 | return (d - distance) * (d - distance);
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | public static double CalculateNormalizedStress(int dimension, DoubleMatrix distances, DoubleMatrix coordinates) {
|
---|
| 114 | double stress = 0;
|
---|
| 115 | for (int i = 0; i < dimension - 1; i++) {
|
---|
| 116 | for (int j = i + 1; j < dimension; j++) {
|
---|
| 117 | if (distances[i, j] != 0) {
|
---|
| 118 | stress += Stress(coordinates[i, 0], coordinates[i, 1], distances[i, j], coordinates[j, 0], coordinates[j, 1])
|
---|
| 119 | / (distances[i, j] * distances[i, j]);
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 | return stress;
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | private class Info {
|
---|
| 127 | public DoubleMatrix Coordinates { get; set; }
|
---|
| 128 | public DoubleMatrix Distances { get; set; }
|
---|
| 129 | public int Row { get; set; }
|
---|
| 130 |
|
---|
| 131 | public Info(DoubleMatrix c, DoubleMatrix d, int r) {
|
---|
| 132 | Coordinates = c;
|
---|
| 133 | Distances = d;
|
---|
| 134 | Row = r;
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 | }
|
---|
| 138 | } |
---|