[7664] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Problems.Instances.Regression {
|
---|
| 27 | public class SalutowiczFunctionTwoDimensional : ArtificialRegressionDataDescriptor {
|
---|
| 28 |
|
---|
| 29 | public override string Name { get { return "Vladislavleva Salutowicz2D"; } }
|
---|
| 30 | public override string Description {
|
---|
| 31 | get {
|
---|
| 32 | return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
|
---|
| 33 | + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
|
---|
| 34 | + "Function: F3(X1, X2) = e^-X1 * X1^3 * cos(X1) * sin(X1) * (cos(X1)sin(X1)^2 - 1)(X2 - 5)" + Environment.NewLine
|
---|
| 35 | + "Training Data: 601 points X1 = (0.05:0.1:10), X2 = (0.05:2:10.05)" + Environment.NewLine
|
---|
| 36 | + "Test Data: 2554 points X1 = (-0.5:0.05:10.5), X2 = (-0.5:0.5:10.5)" + Environment.NewLine
|
---|
| 37 | + "Function Set: +, -, *, /, sqaure, x^real, x + real, x + real, e^x, e^-x, sin(x), cos(x)" + Environment.NewLine + Environment.NewLine
|
---|
| 38 | + "Important: The stepwidth of the variable X1 in the test partition has been set to 0.1, to fit the amount of data points.";
|
---|
| 39 | }
|
---|
| 40 | }
|
---|
| 41 | protected override string TargetVariable { get { return "Y"; } }
|
---|
[7682] | 42 | protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } }
|
---|
| 43 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } }
|
---|
[7664] | 44 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 45 | protected override int TrainingPartitionEnd { get { return 601; } }
|
---|
| 46 | protected override int TestPartitionStart { get { return 601; } }
|
---|
| 47 | protected override int TestPartitionEnd { get { return 3155; } }
|
---|
| 48 |
|
---|
[7682] | 49 | protected override List<List<double>> GenerateValues() {
|
---|
[7664] | 50 | List<List<double>> data = new List<List<double>>();
|
---|
| 51 | List<List<double>> trainingData = new List<List<double>>() {
|
---|
[7698] | 52 | ValueGenerator.GenerateSteps(0.05, 10, 0.1).ToList(),
|
---|
| 53 | ValueGenerator.GenerateSteps(0.05, 10.05, 2).ToList()
|
---|
[7664] | 54 | };
|
---|
| 55 |
|
---|
| 56 | List<List<double>> testData = new List<List<double>>() {
|
---|
[7698] | 57 | ValueGenerator.GenerateSteps(-0.5, 10.5, 0.1).ToList(),
|
---|
| 58 | ValueGenerator.GenerateSteps(-0.5, 10.5, 0.5).ToList()
|
---|
[7664] | 59 | };
|
---|
| 60 |
|
---|
[7698] | 61 | var trainingComb = ValueGenerator.GenerateAllCombinationsOfValuesInLists(trainingData).ToList<IEnumerable<double>>();
|
---|
| 62 | var testComb = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData).ToList<IEnumerable<double>>();
|
---|
[7664] | 63 |
|
---|
| 64 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
[7698] | 65 | data.Add(trainingComb[i].ToList());
|
---|
| 66 | data[i].AddRange(testComb[i]);
|
---|
[7664] | 67 | }
|
---|
| 68 |
|
---|
| 69 | double x1, x2;
|
---|
| 70 | List<double> results = new List<double>();
|
---|
| 71 | for (int i = 0; i < data[0].Count; i++) {
|
---|
| 72 | x1 = data[0][i];
|
---|
| 73 | x2 = data[1][i];
|
---|
| 74 | results.Add(Math.Exp(-x1) * Math.Pow(x1, 3) * Math.Cos(x1) * Math.Sin(x1) * (Math.Cos(x1) * Math.Pow(Math.Sin(x1), 2) - 1) * (x2 - 5));
|
---|
| 75 | }
|
---|
| 76 | data.Add(results);
|
---|
| 77 |
|
---|
[7682] | 78 | return data;
|
---|
[7664] | 79 | }
|
---|
| 80 | }
|
---|
| 81 | }
|
---|