[7664] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 |
|
---|
| 26 | namespace HeuristicLab.Problems.Instances.Regression {
|
---|
| 27 | public class RippleFunction : ArtificialRegressionDataDescriptor {
|
---|
| 28 |
|
---|
| 29 | public override string Name { get { return "Vladislavleva Ripple"; } }
|
---|
| 30 | public override string Description {
|
---|
| 31 | get {
|
---|
| 32 | return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
|
---|
| 33 | + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
|
---|
| 34 | + "Function: F7(X1, X2) = (X1 - 3)(X2 - 3) + 2 * sin((X1 - 4)(X2 - 4))" + Environment.NewLine
|
---|
| 35 | + "Training Data: 300 points X1, X2 = Rand(0.05, 6.05)" + Environment.NewLine
|
---|
| 36 | + "Test Data: 1000 points X1, X2 = Rand(-0.25, 6.35)" + Environment.NewLine
|
---|
| 37 | + "Function Set: +, -, *, /, sqaure, x^real, x + real, x + real, e^x, e^-x, sin(x), cos(x)";
|
---|
| 38 | }
|
---|
| 39 | }
|
---|
| 40 | protected override string TargetVariable { get { return "Y"; } }
|
---|
[7682] | 41 | protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } }
|
---|
| 42 | protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } }
|
---|
[7664] | 43 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
| 44 | protected override int TrainingPartitionEnd { get { return 300; } }
|
---|
| 45 | protected override int TestPartitionStart { get { return 300; } }
|
---|
| 46 | protected override int TestPartitionEnd { get { return 1300; } }
|
---|
| 47 |
|
---|
[7682] | 48 | protected override List<List<double>> GenerateValues() {
|
---|
[7664] | 49 | List<List<double>> data = new List<List<double>>();
|
---|
| 50 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
| 51 | data.Add(ValueGenerator.GenerateUniformDistributedValues(TrainingPartitionEnd, 0.05, 6.05));
|
---|
| 52 | }
|
---|
| 53 |
|
---|
| 54 | for (int i = 0; i < AllowedInputVariables.Count(); i++) {
|
---|
| 55 | data[i].AddRange(ValueGenerator.GenerateUniformDistributedValues(TrainingPartitionEnd, -0.25, 6.35));
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | double x1, x2;
|
---|
| 59 | List<double> results = new List<double>();
|
---|
| 60 | for (int i = 0; i < data[0].Count; i++) {
|
---|
| 61 | x1 = data[0][i];
|
---|
| 62 | x2 = data[1][i];
|
---|
| 63 | results.Add((x1 - 3) * (x2 - 3) + 2 * Math.Sin((x1 - 4) * (x2 - 4)));
|
---|
| 64 | }
|
---|
| 65 | data.Add(results);
|
---|
| 66 |
|
---|
[7682] | 67 | return data;
|
---|
[7664] | 68 | }
|
---|
| 69 | }
|
---|
| 70 | }
|
---|