Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Vladislavleva/RationalPolynomialTwoDimensional.cs @ 7683

Last change on this file since 7683 was 7682, checked in by sforsten, 13 years ago

#1784:

  • added Problem.Instances.Classification project
  • added classification problem instances
  • added a class Transformer to Problem.Instances
File size: 3.3 KB
RevLine 
[7664]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.Regression {
27  public class RationalPolynomialTwoDimensional : ArtificialRegressionDataDescriptor {
28
29    public override string Name { get { return "Vladislavleva RatPol2D"; } }
30    public override string Description {
31      get {
32        return "Paper: Order of Nonlinearity as a Complexity Measure for Models Generated by Symbolic Regression via Pareto Genetic Programming " + Environment.NewLine
33        + "Authors: Ekaterina J. Vladislavleva, Member, IEEE, Guido F. Smits, Member, IEEE, and Dick den Hertog" + Environment.NewLine
34        + "Function: F8(X1, X2) = ((X1 - 3)^4 + (X2 - 3)^3 - (X2 -3)) / ((X2 - 2)^4 + 10)" + Environment.NewLine
35        + "Training Data: 50 points X1, X2 = Rand(0.05, 6.05)" + Environment.NewLine
36        + "Test Data: 1157 points X1, X2 = (-0.25:0.2:6.35)" + Environment.NewLine
37        + "Function Set: +, -, *, /, sqaure, x^real, x + real, x + real";
38      }
39    }
40    protected override string TargetVariable { get { return "Y"; } }
[7682]41    protected override string[] InputVariables { get { return new string[] { "X1", "X2", "Y" }; } }
42    protected override string[] AllowedInputVariables { get { return new string[] { "X1", "X2" }; } }
[7664]43    protected override int TrainingPartitionStart { get { return 0; } }
44    protected override int TrainingPartitionEnd { get { return 50; } }
45    protected override int TestPartitionStart { get { return 1000; } }
46    protected override int TestPartitionEnd { get { return 2157; } }
47
[7682]48    protected override List<List<double>> GenerateValues() {
[7664]49      List<List<double>> data = new List<List<double>>();
50
51      List<double> oneVariableTestData = ValueGenerator.GenerateSteps(-0.25, 6.35, 0.2);
52      List<List<double>> testData = new List<List<double>>() { oneVariableTestData, oneVariableTestData };
53
54      testData = ValueGenerator.GenerateAllCombinationsOfValuesInLists(testData);
55      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
56        data.Add(ValueGenerator.GenerateUniformDistributedValues(1000, 0.05, 6.05));
57        data[i].AddRange(oneVariableTestData);
58      }
59
60      double x1, x2;
61      List<double> results = new List<double>();
62      for (int i = 0; i < data[0].Count; i++) {
63        x1 = data[0][i];
64        x2 = data[1][i];
65        results.Add((Math.Pow(x1 - 3, 4) + Math.Pow(x2 - 3, 3) - x2 + 3) / (Math.Pow(x2 - 2, 4) + 10));
66      }
67      data.Add(results);
68
[7682]69      return data;
[7664]70    }
71  }
72}
Note: See TracBrowser for help on using the repository browser.