Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionNine.cs @ 7666

Last change on this file since 7666 was 7664, checked in by sforsten, 13 years ago

#1784:

  • added Keijzer, Korns, Vladislavleva und Nguyen regression problem instances
  • changes have been made in the ProblemView. Some parts have been replaced with views from Problems.Instances.Views
File size: 3.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.Regression {
27  public class KornsFunctionNine : ArtificialRegressionDataDescriptor {
28
29    public override string Name { get { return "Korns 9 y = ((sqrt(X0) / log(X1)) * (exp(X2) / square(X3)))"; } }
30    public override string Description {
31      get {
32        return "Paper: Accuracy in Symbolic Regression" + Environment.NewLine
33        + "Authors: Michael F. Korns" + Environment.NewLine
34        + "Function: y = ((sqrt(X0) / log(X1)) * (exp(X2) / square(X3)))" + Environment.NewLine
35        + "Real Numbers: 3.45, -.982, 100.389, and all other real constants" + Environment.NewLine
36        + "Row Features: x1, x2, x9, and all other features" + Environment.NewLine
37        + "Binary Operators: +, -, *, /" + Environment.NewLine
38        + "Unary Operators: sqrt, square, cube, cos, sin, tan, tanh, log, exp" + Environment.NewLine
39        + "\"Our testing regimen uses only statistical best practices out-of-sample testing techniques. "
40        + "We test each of the test cases on matrices of 10000 rows by 1 to 5 columns with no noise. "
41        + "For each test a training matrix is filled with random numbers between -50 and +50. The test case "
42        + "target expressions are limited to one basis function whose maximum depth is three grammar nodes.\"" + Environment.NewLine + Environment.NewLine
43        + "Note: Because of the square root and the logarithm only non-negatic values are created for the input variables!";
44      }
45    }
46    protected override string TargetVariable { get { return "Y"; } }
47    protected override IEnumerable<string> InputVariables { get { return new List<string>() { "X0", "X1", "X2", "X3", "X4", "Y" }; } }
48    protected override IEnumerable<string> AllowedInputVariables { get { return new List<string>() { "X0", "X1", "X2", "X3", "X4" }; } }
49    protected override int TrainingPartitionStart { get { return 0; } }
50    protected override int TrainingPartitionEnd { get { return 5000; } }
51    protected override int TestPartitionStart { get { return 5000; } }
52    protected override int TestPartitionEnd { get { return 10000; } }
53
54    protected override double[,] GenerateValues() {
55      List<List<double>> data = new List<List<double>>();
56      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
57        data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, 0, 50));
58      }
59
60      double x0, x1, x2, x3;
61      List<double> results = new List<double>();
62      for (int i = 0; i < data[0].Count; i++) {
63        x0 = data[0][i];
64        x1 = data[1][i];
65        x2 = data[2][i];
66        x3 = data[3][i];
67        results.Add(((Math.Sqrt(x0) / Math.Log(x1)) * (Math.Exp(x2) / Math.Pow(x3, 2))));
68      }
69      data.Add(results);
70
71      return ValueGenerator.Transformation(data);
72    }
73  }
74}
Note: See TracBrowser for help on using the repository browser.