Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.Instances.Regression/3.4/Korns/KornsFunctionFourteen.cs @ 7759

Last change on this file since 7759 was 7698, checked in by sforsten, 13 years ago

#1784:

  • ProblemInstanceProvider are sorted now
  • the return values of ValueGenerator have been changed to !IEnumerable
  • changes have been applied to classes which are using the ValueGenerator
  • change of the cast in ProblemInstanceProviderViewGeneric and !importButton.Enable is set now in SetEnabledStateOfControls
File size: 3.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25
26namespace HeuristicLab.Problems.Instances.Regression {
27  public class KornsFunctionFourteen : ArtificialRegressionDataDescriptor {
28
29    public override string Name { get { return "Korns 14 y = 22.0 + (4.2 * ((cos(X0) - tan(X1)) * (tanh(X2) / sin(X3))))"; } }
30    public override string Description {
31      get {
32        return "Paper: Accuracy in Symbolic Regression" + Environment.NewLine
33        + "Authors: Michael F. Korns" + Environment.NewLine
34        + "Function: y = 22.0 + (4.2 * ((cos(X0) - tan(X1)) * (tanh(X2) / sin(X3))))" + Environment.NewLine
35        + "Real Numbers: 3.45, -.982, 100.389, and all other real constants" + Environment.NewLine
36        + "Row Features: x1, x2, x9, and all other features" + Environment.NewLine
37        + "Binary Operators: +, -, *, /" + Environment.NewLine
38        + "Unary Operators: sqrt, square, cube, cos, sin, tan, tanh, log, exp" + Environment.NewLine
39        + "\"Our testing regimen uses only statistical best practices out-of-sample testing techniques. "
40        + "We test each of the test cases on matrices of 10000 rows by 1 to 5 columns with no noise. "
41        + "For each test a training matrix is filled with random numbers between -50 and +50. The test case "
42        + "target expressions are limited to one basis function whose maximum depth is three grammar nodes.\"";
43      }
44    }
45    protected override string TargetVariable { get { return "Y"; } }
46    protected override string[] InputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4", "Y" }; } }
47    protected override string[] AllowedInputVariables { get { return new string[] { "X0", "X1", "X2", "X3", "X4" }; } }
48    protected override int TrainingPartitionStart { get { return 0; } }
49    protected override int TrainingPartitionEnd { get { return 5000; } }
50    protected override int TestPartitionStart { get { return 5000; } }
51    protected override int TestPartitionEnd { get { return 10000; } }
52
53    protected override List<List<double>> GenerateValues() {
54      List<List<double>> data = new List<List<double>>();
55      for (int i = 0; i < AllowedInputVariables.Count(); i++) {
56        data.Add(ValueGenerator.GenerateUniformDistributedValues(TestPartitionEnd, -50, 50).ToList());
57      }
58
59      double x0, x1, x2, x3;
60      List<double> results = new List<double>();
61      for (int i = 0; i < data[0].Count; i++) {
62        x0 = data[0][i];
63        x1 = data[1][i];
64        x2 = data[2][i];
65        x3 = data[3][i];
66        results.Add(22.0 + (4.2 * ((Math.Cos(x0) - Math.Tan(x1)) * (Math.Tanh(x2) / Math.Sin(x3)))));
67      }
68      data.Add(results);
69
70      return data;
71    }
72  }
73}
Note: See TracBrowser for help on using the repository browser.