Free cookie consent management tool by TermsFeed Policy Generator

source: branches/ProblemInstancesRegressionAndClassification/HeuristicLab.Problems.DataAnalysis.Symbolic.Classification/3.4/SingleObjective/SymbolicClassificationSingleObjectiveProblem.cs @ 7810

Last change on this file since 7810 was 7810, checked in by sforsten, 12 years ago

#1784:

  • removed obsolete import & export methods from RegressionProblem and ClassificationProblem, because they are implemented in the base classes
  • removed unnecessary references in Problems.QuadraticAssignment.Views
File size: 5.5 KB
RevLine 
[5618]1#region License Information
2/* HeuristicLab
[7259]3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[5618]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21using System.Linq;
22using HeuristicLab.Common;
23using HeuristicLab.Core;
[5716]24using HeuristicLab.Parameters;
[5618]25using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[7750]26using HeuristicLab.Problems.Instances;
[5618]27
28namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Classification {
29  [Item("Symbolic Classification Problem (single objective)", "Represents a single objective symbolic classfication problem.")]
30  [StorableClass]
31  [Creatable("Problems")]
[7750]32  public class SymbolicClassificationSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem<IClassificationProblemData, ISymbolicClassificationSingleObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IClassificationProblem,
[7805]33    IProblemInstanceConsumer<IClassificationProblemData>, IProblemInstanceExporter<IClassificationProblemData> {
[5618]34    private const double PunishmentFactor = 10;
[5685]35    private const int InitialMaximumTreeDepth = 8;
36    private const int InitialMaximumTreeLength = 25;
[5770]37    private const string EstimationLimitsParameterName = "EstimationLimits";
38    private const string EstimationLimitsParameterDescription = "The lower and upper limit for the estimated value that can be returned by the symbolic classification model.";
[5618]39
[5685]40    #region parameter properties
[5770]41    public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
42      get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
[5685]43    }
44    #endregion
45    #region properties
[5770]46    public DoubleLimit EstimationLimits {
47      get { return EstimationLimitsParameter.Value; }
[5685]48    }
49    #endregion
[5618]50    [StorableConstructor]
51    protected SymbolicClassificationSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
52    protected SymbolicClassificationSingleObjectiveProblem(SymbolicClassificationSingleObjectiveProblem original, Cloner cloner) : base(original, cloner) { }
53    public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicClassificationSingleObjectiveProblem(this, cloner); }
54
55    public SymbolicClassificationSingleObjectiveProblem()
56      : base(new ClassificationProblemData(), new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
[5847]57      Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
[5685]58
[5854]59      EstimationLimitsParameter.Hidden = true;
60
[5685]61      MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
62      MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
63
[6803]64      SymbolicExpressionTreeGrammarParameter.ValueChanged += (o, e) => ConfigureGrammarSymbols();
65
66      ConfigureGrammarSymbols();
[5685]67      InitializeOperators();
[5716]68      UpdateEstimationLimits();
[5618]69    }
70
[6803]71    private void ConfigureGrammarSymbols() {
72      var grammar = SymbolicExpressionTreeGrammar as TypeCoherentExpressionGrammar;
73      if (grammar != null) grammar.ConfigureAsDefaultClassificationGrammar();
74    }
75
[5685]76    private void InitializeOperators() {
77      Operators.Add(new SymbolicClassificationSingleObjectiveTrainingBestSolutionAnalyzer());
78      Operators.Add(new SymbolicClassificationSingleObjectiveValidationBestSolutionAnalyzer());
[5747]79      Operators.Add(new SymbolicClassificationSingleObjectiveOverfittingAnalyzer());
[7734]80      Operators.Add(new SymbolicClassificationSingleObjectiveTrainingParetoBestSolutionAnalyzer());
81      Operators.Add(new SymbolicClassificationSingleObjectiveValidationParetoBestSolutionAnalyzer());
[5685]82      ParameterizeOperators();
83    }
84
85    private void UpdateEstimationLimits() {
[6754]86      if (ProblemData.TrainingIndizes.Any()) {
[6740]87        var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToList();
[5618]88        var mean = targetValues.Average();
89        var range = targetValues.Max() - targetValues.Min();
[5770]90        EstimationLimits.Upper = mean + PunishmentFactor * range;
91        EstimationLimits.Lower = mean - PunishmentFactor * range;
[6754]92      } else {
93        EstimationLimits.Upper = double.MaxValue;
94        EstimationLimits.Lower = double.MinValue;
[5618]95      }
96    }
[5623]97
[5685]98    protected override void OnProblemDataChanged() {
99      base.OnProblemDataChanged();
100      UpdateEstimationLimits();
101    }
102
103    protected override void ParameterizeOperators() {
104      base.ParameterizeOperators();
[5770]105      if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
106        var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
107        foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
108          op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
109        }
[5685]110      }
111    }
[5618]112  }
113}
Note: See TracBrowser for help on using the repository browser.