1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2016 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Common;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Random;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.Instances.DataAnalysis {
|
---|
30 | public class VariableNetwork : ArtificialRegressionDataDescriptor {
|
---|
31 | private int nTrainingSamples;
|
---|
32 | private int nTestSamples;
|
---|
33 |
|
---|
34 | private int numberOfFeatures;
|
---|
35 | private double noiseRatio;
|
---|
36 | private IRandom random;
|
---|
37 |
|
---|
38 | public override string Name { get { return string.Format("VariableNetwork-{0:0%} ({1} dim)", noiseRatio, numberOfFeatures); } }
|
---|
39 | private string networkDefinition;
|
---|
40 | public string NetworkDefinition { get { return networkDefinition; } }
|
---|
41 | public override string Description {
|
---|
42 | get {
|
---|
43 | return "The data are generated specifically to test methods for variable network analysis.";
|
---|
44 | }
|
---|
45 | }
|
---|
46 |
|
---|
47 | public VariableNetwork(int numberOfFeatures, double noiseRatio,
|
---|
48 | IRandom rand)
|
---|
49 | : this(250, 250, numberOfFeatures, noiseRatio, rand) { }
|
---|
50 |
|
---|
51 | public VariableNetwork(int nTrainingSamples, int nTestSamples,
|
---|
52 | int numberOfFeatures, double noiseRatio, IRandom rand) {
|
---|
53 | this.nTrainingSamples = nTrainingSamples;
|
---|
54 | this.nTestSamples = nTestSamples;
|
---|
55 | this.noiseRatio = noiseRatio;
|
---|
56 | this.random = rand;
|
---|
57 | this.numberOfFeatures = numberOfFeatures;
|
---|
58 | // default variable names
|
---|
59 | variableNames = Enumerable.Range(1, numberOfFeatures)
|
---|
60 | .Select(i => string.Format("X{0:000}", i))
|
---|
61 | .ToArray();
|
---|
62 | }
|
---|
63 |
|
---|
64 | private string[] variableNames;
|
---|
65 | protected override string[] VariableNames {
|
---|
66 | get {
|
---|
67 | return variableNames;
|
---|
68 | }
|
---|
69 | }
|
---|
70 |
|
---|
71 | // there is no specific target variable in variable network analysis but we still need to specify one
|
---|
72 | protected override string TargetVariable { get { return VariableNames.Last(); } }
|
---|
73 |
|
---|
74 | protected override string[] AllowedInputVariables {
|
---|
75 | get {
|
---|
76 | return VariableNames.Take(numberOfFeatures - 1).ToArray();
|
---|
77 | }
|
---|
78 | }
|
---|
79 |
|
---|
80 | protected override int TrainingPartitionStart { get { return 0; } }
|
---|
81 | protected override int TrainingPartitionEnd { get { return nTrainingSamples; } }
|
---|
82 | protected override int TestPartitionStart { get { return nTrainingSamples; } }
|
---|
83 | protected override int TestPartitionEnd { get { return nTrainingSamples + nTestSamples; } }
|
---|
84 |
|
---|
85 |
|
---|
86 | protected override List<List<double>> GenerateValues() {
|
---|
87 | // variable names are shuffled in the beginning (and sorted at the end)
|
---|
88 | variableNames = variableNames.Shuffle(random).ToArray();
|
---|
89 |
|
---|
90 | // a third of all variables are independent vars
|
---|
91 | List<List<double>> lvl0 = new List<List<double>>();
|
---|
92 | int numLvl0 = (int)Math.Ceiling(numberOfFeatures * 0.33);
|
---|
93 |
|
---|
94 | List<string> description = new List<string>(); // store information how the variable is actually produced
|
---|
95 | List<string[]> inputVarNames = new List<string[]>(); // store information to produce graphviz file
|
---|
96 |
|
---|
97 | var nrand = new NormalDistributedRandom(random, 0, 1);
|
---|
98 | for (int c = 0; c < numLvl0; c++) {
|
---|
99 | var datai = Enumerable.Range(0, TestPartitionEnd).Select(_ => nrand.NextDouble()).ToList();
|
---|
100 | inputVarNames.Add(new string[] { });
|
---|
101 | description.Add("~ N(0, 1)");
|
---|
102 | lvl0.Add(datai);
|
---|
103 | }
|
---|
104 |
|
---|
105 | // lvl1 contains variables which are functions of vars in lvl0 (+ noise)
|
---|
106 | List<List<double>> lvl1 = new List<List<double>>();
|
---|
107 | int numLvl1 = (int)Math.Ceiling(numberOfFeatures * 0.33);
|
---|
108 | for (int c = 0; c < numLvl1; c++) {
|
---|
109 | string[] selectedVarNames;
|
---|
110 | var x = GenerateRandomFunction(random, lvl0, out selectedVarNames);
|
---|
111 | var sigma = x.StandardDeviation();
|
---|
112 | var noisePrng = new NormalDistributedRandom(random, 0, sigma * Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
|
---|
113 | lvl1.Add(x.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
114 |
|
---|
115 | inputVarNames.Add(selectedVarNames);
|
---|
116 | var desc = string.Format("f({0})", string.Join(",", selectedVarNames));
|
---|
117 | description.Add(string.Format(" ~ N({0}, {1:N3})", desc, noisePrng.Sigma));
|
---|
118 | }
|
---|
119 |
|
---|
120 | // lvl2 contains variables which are functions of vars in lvl0 and lvl1 (+ noise)
|
---|
121 | List<List<double>> lvl2 = new List<List<double>>();
|
---|
122 | int numLvl2 = (int)Math.Ceiling(numberOfFeatures * 0.2);
|
---|
123 | for (int c = 0; c < numLvl2; c++) {
|
---|
124 | string[] selectedVarNames;
|
---|
125 | var x = GenerateRandomFunction(random, lvl0.Concat(lvl1).ToList(), out selectedVarNames);
|
---|
126 | var sigma = x.StandardDeviation();
|
---|
127 | var noisePrng = new NormalDistributedRandom(random, 0, sigma * Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
|
---|
128 | lvl2.Add(x.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
129 |
|
---|
130 | inputVarNames.Add(selectedVarNames);
|
---|
131 | var desc = string.Format("f({0})", string.Join(",", selectedVarNames));
|
---|
132 | description.Add(string.Format(" ~ N({0}, {1:N3})", desc, noisePrng.Sigma));
|
---|
133 | }
|
---|
134 |
|
---|
135 | // lvl3 contains variables which are functions of vars in lvl0, lvl1 and lvl2 (+ noise)
|
---|
136 | List<List<double>> lvl3 = new List<List<double>>();
|
---|
137 | int numLvl3 = numberOfFeatures - numLvl0 - numLvl1 - numLvl2;
|
---|
138 | for (int c = 0; c < numLvl3; c++) {
|
---|
139 | string[] selectedVarNames;
|
---|
140 | var x = GenerateRandomFunction(random, lvl0.Concat(lvl1).Concat(lvl2).ToList(), out selectedVarNames);
|
---|
141 | var sigma = x.StandardDeviation();
|
---|
142 | var noisePrng = new NormalDistributedRandom(random, 0, sigma * Math.Sqrt(noiseRatio / (1.0 - noiseRatio)));
|
---|
143 | lvl3.Add(x.Select(t => t + noisePrng.NextDouble()).ToList());
|
---|
144 |
|
---|
145 | inputVarNames.Add(selectedVarNames);
|
---|
146 | var desc = string.Format("f({0})", string.Join(",", selectedVarNames));
|
---|
147 | description.Add(string.Format(" ~ N({0}, {1:N3})", desc, noisePrng.Sigma));
|
---|
148 | }
|
---|
149 |
|
---|
150 | networkDefinition = string.Join(Environment.NewLine, variableNames.Zip(description, (n, d) => n + d));
|
---|
151 | // for graphviz
|
---|
152 | networkDefinition += Environment.NewLine + "digraph G {";
|
---|
153 | foreach (var t in variableNames.Zip(inputVarNames, Tuple.Create).OrderBy(t => t.Item1)) {
|
---|
154 | var name = t.Item1;
|
---|
155 | var selectedVarNames = t.Item2;
|
---|
156 | foreach (var selectedVarName in selectedVarNames) {
|
---|
157 | networkDefinition += Environment.NewLine + selectedVarName + " -> " + name;
|
---|
158 | }
|
---|
159 | }
|
---|
160 | networkDefinition += Environment.NewLine + "}";
|
---|
161 |
|
---|
162 | // return a random permutation of all variables
|
---|
163 | var allVars = lvl0.Concat(lvl1).Concat(lvl2).Concat(lvl3).ToList();
|
---|
164 | var orderedVars = allVars.Zip(variableNames, Tuple.Create).OrderBy(t => t.Item2).Select(t => t.Item1).ToList();
|
---|
165 | variableNames = variableNames.OrderBy(n => n).ToArray();
|
---|
166 | return orderedVars;
|
---|
167 | }
|
---|
168 |
|
---|
169 | // sample the input variables that are actually used and sample from a Gaussian process
|
---|
170 | private IEnumerable<double> GenerateRandomFunction(IRandom rand, List<List<double>> xs, out string[] selectedVarNames) {
|
---|
171 | double r = -Math.Log(1.0 - rand.NextDouble()) * 2.0; // r is exponentially distributed with lambda = 2
|
---|
172 | int nl = (int)Math.Floor(1.5 + r); // number of selected vars is likely to be between three and four
|
---|
173 | if (nl > xs.Count) nl = xs.Count; // limit max
|
---|
174 |
|
---|
175 | var selectedIdx = Enumerable.Range(0, xs.Count).Shuffle(random)
|
---|
176 | .Take(nl).ToArray();
|
---|
177 |
|
---|
178 | var selectedVars = selectedIdx.Select(i => xs[i]).ToArray();
|
---|
179 | selectedVarNames = selectedIdx.Select(i => VariableNames[i]).ToArray();
|
---|
180 | return SampleGaussianProcess(random, selectedVars);
|
---|
181 | }
|
---|
182 |
|
---|
183 | private IEnumerable<double> SampleGaussianProcess(IRandom random, List<double>[] xs) {
|
---|
184 | int nl = xs.Length;
|
---|
185 | int nRows = xs.First().Count;
|
---|
186 | double[,] K = new double[nRows, nRows];
|
---|
187 |
|
---|
188 | // sample length-scales
|
---|
189 | var l = Enumerable.Range(0, nl)
|
---|
190 | .Select(_ => random.NextDouble() * 2 + 0.5)
|
---|
191 | .ToArray();
|
---|
192 | // calculate covariance matrix
|
---|
193 | for (int r = 0; r < nRows; r++) {
|
---|
194 | double[] xi = xs.Select(x => x[r]).ToArray();
|
---|
195 | for (int c = 0; c <= r; c++) {
|
---|
196 | double[] xj = xs.Select(x => x[c]).ToArray();
|
---|
197 | double dSqr = xi.Zip(xj, (xik, xjk) => (xik - xjk))
|
---|
198 | .Select(dk => dk * dk)
|
---|
199 | .Zip(l, (dk, lk) => dk / lk)
|
---|
200 | .Sum();
|
---|
201 | K[r, c] = Math.Exp(-dSqr);
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | // add a small diagonal matrix for numeric stability
|
---|
206 | for (int i = 0; i < nRows; i++) {
|
---|
207 | K[i, i] += 1.0E-7;
|
---|
208 | }
|
---|
209 |
|
---|
210 | // decompose
|
---|
211 | alglib.trfac.spdmatrixcholesky(ref K, nRows, false);
|
---|
212 |
|
---|
213 | // sample u iid ~ N(0, 1)
|
---|
214 | var u = Enumerable.Range(0, nRows).Select(_ => NormalDistributedRandom.NextDouble(random, 0, 1)).ToArray();
|
---|
215 |
|
---|
216 | // calc y = Lu
|
---|
217 | var y = new double[u.Length];
|
---|
218 | alglib.ablas.rmatrixmv(nRows, nRows, K, 0, 0, 0, u, 0, ref y, 0);
|
---|
219 |
|
---|
220 | return y;
|
---|
221 | }
|
---|
222 | }
|
---|
223 | }
|
---|