[6586] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using HeuristicLab.Common;
|
---|
| 23 | using HeuristicLab.Core;
|
---|
| 24 | using HeuristicLab.Data;
|
---|
| 25 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 26 | using HeuristicLab.Operators;
|
---|
| 27 | using HeuristicLab.Optimization;
|
---|
| 28 | using HeuristicLab.Parameters;
|
---|
| 29 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 30 |
|
---|
| 31 | namespace HeuristicLab.Problems.QuadraticAssignment.Algorithms {
|
---|
| 32 | [Item("RobustTabooSearchOperator", "Performs an iteration of the robust taboo search algorithm as descrbied in Taillard 1991.")]
|
---|
| 33 | public sealed class RobustTabooSeachOperator : SingleSuccessorOperator, IIterationBasedOperator, IStochasticOperator {
|
---|
| 34 |
|
---|
| 35 | #region Parameter Properties
|
---|
| 36 | public ILookupParameter<IntValue> IterationsParameter {
|
---|
| 37 | get { return (ILookupParameter<IntValue>)Parameters["Iterations"]; }
|
---|
| 38 | }
|
---|
[6593] | 39 | public ILookupParameter<IRandom> RandomParameter {
|
---|
| 40 | get { return (ILookupParameter<IRandom>)Parameters["Random"]; }
|
---|
| 41 | }
|
---|
[6586] | 42 | public ILookupParameter<Permutation> PermutationParameter {
|
---|
| 43 | get { return (ILookupParameter<Permutation>)Parameters["Permutation"]; }
|
---|
| 44 | }
|
---|
| 45 | public ILookupParameter<DoubleMatrix> WeightsParameter {
|
---|
| 46 | get { return (ILookupParameter<DoubleMatrix>)Parameters["Weights"]; }
|
---|
| 47 | }
|
---|
| 48 | public ILookupParameter<DoubleMatrix> DistancesParameter {
|
---|
| 49 | get { return (ILookupParameter<DoubleMatrix>)Parameters["Distances"]; }
|
---|
| 50 | }
|
---|
| 51 | public ILookupParameter<IntMatrix> ShortTermMemoryParameter {
|
---|
| 52 | get { return (ILookupParameter<IntMatrix>)Parameters["ShortTermMemory"]; }
|
---|
| 53 | }
|
---|
| 54 | public ILookupParameter<DoubleMatrix> MoveQualityMatrixParameter {
|
---|
| 55 | get { return (ILookupParameter<DoubleMatrix>)Parameters["MoveQualityMatrix"]; }
|
---|
| 56 | }
|
---|
| 57 | public ILookupParameter<DoubleValue> QualityParameter {
|
---|
| 58 | get { return (ILookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
| 59 | }
|
---|
| 60 | public ILookupParameter<DoubleValue> BestQualityParameter {
|
---|
| 61 | get { return (ILookupParameter<DoubleValue>)Parameters["BestQuality"]; }
|
---|
| 62 | }
|
---|
| 63 | public ILookupParameter<Swap2Move> LastMoveParameter {
|
---|
| 64 | get { return (ILookupParameter<Swap2Move>)Parameters["LastMove"]; }
|
---|
| 65 | }
|
---|
[6593] | 66 | public ILookupParameter<BoolValue> UseNewTabuTenureAdaptionSchemeParameter {
|
---|
| 67 | get { return (ILookupParameter<BoolValue>)Parameters["UseNewTabuTenureAdaptionScheme"]; }
|
---|
| 68 | }
|
---|
[6586] | 69 | public ILookupParameter<ResultCollection> ResultsParameter {
|
---|
| 70 | get { return (ILookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | public IValueLookupParameter<IntValue> MaximumIterationsParameter {
|
---|
| 74 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumIterations"]; }
|
---|
| 75 | }
|
---|
| 76 | public IValueLookupParameter<IntValue> MinimumTabuTenureParameter {
|
---|
| 77 | get { return (IValueLookupParameter<IntValue>)Parameters["MinimumTabuTenure"]; }
|
---|
| 78 | }
|
---|
| 79 | public IValueLookupParameter<IntValue> MaximumTabuTenureParameter {
|
---|
| 80 | get { return (IValueLookupParameter<IntValue>)Parameters["MaximumTabuTenure"]; }
|
---|
| 81 | }
|
---|
| 82 | public IValueLookupParameter<BoolValue> UseAlternativeAspirationParameter {
|
---|
| 83 | get { return (IValueLookupParameter<BoolValue>)Parameters["UseAlternativeAspiration"]; }
|
---|
| 84 | }
|
---|
| 85 | public IValueLookupParameter<IntValue> AlternativeAspirationTenureParameter {
|
---|
| 86 | get { return (IValueLookupParameter<IntValue>)Parameters["AlternativeAspirationTenure"]; }
|
---|
| 87 | }
|
---|
| 88 | #endregion
|
---|
| 89 |
|
---|
| 90 | [StorableConstructor]
|
---|
| 91 | private RobustTabooSeachOperator(bool deserializing) : base(deserializing) { }
|
---|
| 92 | private RobustTabooSeachOperator(RobustTabooSeachOperator original, Cloner cloner)
|
---|
| 93 | : base(original, cloner) {
|
---|
| 94 | }
|
---|
| 95 | public RobustTabooSeachOperator() {
|
---|
| 96 | Parameters.Add(new LookupParameter<IntValue>("Iterations", "The current iteration."));
|
---|
| 97 | Parameters.Add(new LookupParameter<IRandom>("Random", "The random number generator to use."));
|
---|
| 98 | Parameters.Add(new LookupParameter<Permutation>("Permutation", "The permutation solution."));
|
---|
| 99 | Parameters.Add(new LookupParameter<DoubleMatrix>("Weights", "The weights matrix."));
|
---|
| 100 | Parameters.Add(new LookupParameter<DoubleMatrix>("Distances", "The distances matrix."));
|
---|
| 101 | Parameters.Add(new LookupParameter<IntMatrix>("ShortTermMemory", "The table that stores the iteration at which a certain facility has been assigned to a certain location."));
|
---|
| 102 | Parameters.Add(new LookupParameter<DoubleMatrix>("MoveQualityMatrix", "The quality of all swap moves as evaluated on the current permutation."));
|
---|
| 103 | Parameters.Add(new LookupParameter<DoubleValue>("Quality", "The quality value."));
|
---|
| 104 | Parameters.Add(new LookupParameter<DoubleValue>("BestQuality", "The best quality value."));
|
---|
| 105 | Parameters.Add(new LookupParameter<Swap2Move>("LastMove", "The last move that was applied."));
|
---|
[6593] | 106 | Parameters.Add(new LookupParameter<BoolValue>("UseNewTabuTenureAdaptionScheme", "True if the new tabu tenure adaption should be used or false otherwise."));
|
---|
[6586] | 107 | Parameters.Add(new LookupParameter<ResultCollection>("Results", "Collection that houses the results of the algorithm."));
|
---|
| 108 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumIterations", "The number of iterations that the algorithm should run."));
|
---|
| 109 | Parameters.Add(new ValueLookupParameter<IntValue>("MinimumTabuTenure", "The minimum tabu tenure."));
|
---|
| 110 | Parameters.Add(new ValueLookupParameter<IntValue>("MaximumTabuTenure", "The maximum tabu tenure."));
|
---|
| 111 | Parameters.Add(new ValueLookupParameter<BoolValue>("UseAlternativeAspiration", "True if the alternative aspiration condition should be used that takes moves that have not been made for some time above others."));
|
---|
| 112 | Parameters.Add(new ValueLookupParameter<IntValue>("AlternativeAspirationTenure", "The time t that a move will be remembered for the alternative aspiration condition."));
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 116 | return new RobustTabooSeachOperator(this, cloner);
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | public override IOperation Apply() {
|
---|
| 120 | IRandom random = RandomParameter.ActualValue;
|
---|
| 121 | int iteration = IterationsParameter.ActualValue.Value;
|
---|
| 122 | IntMatrix shortTermMemory = ShortTermMemoryParameter.ActualValue;
|
---|
| 123 | DoubleMatrix weights = WeightsParameter.ActualValue;
|
---|
| 124 | DoubleMatrix distances = DistancesParameter.ActualValue;
|
---|
| 125 | DoubleMatrix moveQualityMatrix = MoveQualityMatrixParameter.ActualValue;
|
---|
| 126 |
|
---|
| 127 | DoubleValue quality = QualityParameter.ActualValue;
|
---|
| 128 | DoubleValue bestQuality = BestQualityParameter.ActualValue;
|
---|
| 129 | if (bestQuality == null) {
|
---|
| 130 | BestQualityParameter.ActualValue = (DoubleValue)quality.Clone();
|
---|
| 131 | bestQuality = BestQualityParameter.ActualValue;
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | int minTenure = MinimumTabuTenureParameter.ActualValue.Value;
|
---|
| 135 | int maxTenure = MaximumTabuTenureParameter.ActualValue.Value;
|
---|
| 136 | int alternativeAspirationTenure = AlternativeAspirationTenureParameter.ActualValue.Value;
|
---|
| 137 | bool useAlternativeAspiration = UseAlternativeAspirationParameter.ActualValue.Value;
|
---|
| 138 | Permutation solution = PermutationParameter.ActualValue;
|
---|
| 139 | Swap2Move lastMove = LastMoveParameter.ActualValue;
|
---|
| 140 |
|
---|
| 141 | double bestMoveQuality = double.MaxValue;
|
---|
| 142 | Swap2Move bestMove = null;
|
---|
| 143 | bool already_aspired = false;
|
---|
| 144 |
|
---|
| 145 | foreach (Swap2Move move in ExhaustiveSwap2MoveGenerator.Generate(solution)) {
|
---|
| 146 | double moveQuality;
|
---|
| 147 | if (lastMove == null)
|
---|
| 148 | moveQuality = QAPSwap2MoveEvaluator.Apply(solution, move, weights, distances);
|
---|
| 149 | else moveQuality = QAPSwap2MoveEvaluator.Apply(solution, move, moveQualityMatrix[move.Index1, move.Index2], weights, distances, lastMove);
|
---|
| 150 |
|
---|
| 151 | moveQualityMatrix[move.Index1, move.Index2] = moveQuality;
|
---|
| 152 | moveQualityMatrix[move.Index2, move.Index1] = moveQuality;
|
---|
| 153 |
|
---|
| 154 | bool autorized = shortTermMemory[move.Index1, solution[move.Index2]] < iteration
|
---|
| 155 | || shortTermMemory[move.Index2, solution[move.Index1]] < iteration;
|
---|
| 156 |
|
---|
[6593] | 157 | bool aspired = (shortTermMemory[move.Index1, solution[move.Index2]] < iteration - alternativeAspirationTenure
|
---|
| 158 | && shortTermMemory[move.Index2, solution[move.Index1]] < iteration - alternativeAspirationTenure)
|
---|
| 159 | || quality.Value + moveQuality < bestQuality.Value;
|
---|
[6586] | 160 |
|
---|
| 161 | if ((aspired && !already_aspired) // the first alternative move is aspired
|
---|
| 162 | || (aspired && already_aspired && moveQuality < bestMoveQuality) // an alternative move was already aspired, but this is better
|
---|
| 163 | || (autorized && !aspired && !already_aspired && moveQuality < bestMoveQuality)) { // a regular better move is found
|
---|
| 164 | bestMove = move;
|
---|
| 165 | bestMoveQuality = moveQuality;
|
---|
| 166 | if (aspired) already_aspired = true;
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 |
|
---|
| 170 | ResultCollection results = ResultsParameter.ActualValue;
|
---|
| 171 | if (results != null) {
|
---|
| 172 | IntValue aspiredMoves = null;
|
---|
| 173 | if (!results.ContainsKey("AspiredMoves")) {
|
---|
| 174 | aspiredMoves = new IntValue(already_aspired ? 1 : 0);
|
---|
[6593] | 175 | results.Add(new Result("AspiredMoves", "Counts the number of moves that were selected because of the aspiration criteria.", aspiredMoves));
|
---|
[6586] | 176 | } else if (already_aspired) {
|
---|
| 177 | aspiredMoves = (IntValue)results["AspiredMoves"].Value;
|
---|
| 178 | aspiredMoves.Value++;
|
---|
| 179 | }
|
---|
| 180 | }
|
---|
| 181 |
|
---|
| 182 | LastMoveParameter.ActualValue = bestMove;
|
---|
| 183 |
|
---|
| 184 | if (bestMove == null) return base.Apply();
|
---|
| 185 |
|
---|
[6593] | 186 | bool useNewAdaptionScheme = UseNewTabuTenureAdaptionSchemeParameter.ActualValue.Value;
|
---|
| 187 | if (useNewAdaptionScheme) {
|
---|
| 188 | double r = random.NextDouble();
|
---|
[6594] | 189 | if (r == 0) r = 1; // transform to (0;1]
|
---|
[6593] | 190 | shortTermMemory[bestMove.Index1, solution[bestMove.Index1]] = (int)(iteration + r * r * r * maxTenure);
|
---|
| 191 | r = random.NextDouble();
|
---|
[6594] | 192 | if (r == 0) r = 1; // transform to (0;1]
|
---|
[6593] | 193 | shortTermMemory[bestMove.Index2, solution[bestMove.Index2]] = (int)(iteration + r * r * r * maxTenure);
|
---|
| 194 | } else {
|
---|
| 195 | shortTermMemory[bestMove.Index1, solution[bestMove.Index1]] = iteration + random.Next(minTenure, maxTenure);
|
---|
| 196 | shortTermMemory[bestMove.Index2, solution[bestMove.Index2]] = iteration + random.Next(minTenure, maxTenure);
|
---|
| 197 | }
|
---|
[6586] | 198 | Swap2Manipulator.Apply(solution, bestMove.Index1, bestMove.Index2);
|
---|
| 199 | quality.Value += bestMoveQuality;
|
---|
| 200 |
|
---|
| 201 | if (quality.Value < bestQuality.Value) bestQuality.Value = quality.Value;
|
---|
| 202 |
|
---|
| 203 | return base.Apply();
|
---|
| 204 | }
|
---|
| 205 | }
|
---|
| 206 | }
|
---|