[6589] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Collections.Generic;
|
---|
| 23 | using System.Linq;
|
---|
| 24 | using HeuristicLab.Common;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Optimization;
|
---|
| 27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.Problems.DataAnalysis {
|
---|
| 30 | [StorableClass]
|
---|
| 31 | public abstract class ClassificationSolutionBase : DataAnalysisSolution, IClassificationSolution {
|
---|
| 32 | private const string TrainingAccuracyResultName = "Accuracy (training)";
|
---|
| 33 | private const string TestAccuracyResultName = "Accuracy (test)";
|
---|
| 34 |
|
---|
| 35 | public new IClassificationModel Model {
|
---|
| 36 | get { return (IClassificationModel)base.Model; }
|
---|
| 37 | protected set { base.Model = value; }
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | public new IClassificationProblemData ProblemData {
|
---|
| 41 | get { return (IClassificationProblemData)base.ProblemData; }
|
---|
[6653] | 42 | set { base.ProblemData = value; }
|
---|
[6589] | 43 | }
|
---|
| 44 |
|
---|
| 45 | #region Results
|
---|
| 46 | public double TrainingAccuracy {
|
---|
| 47 | get { return ((DoubleValue)this[TrainingAccuracyResultName].Value).Value; }
|
---|
| 48 | private set { ((DoubleValue)this[TrainingAccuracyResultName].Value).Value = value; }
|
---|
| 49 | }
|
---|
| 50 | public double TestAccuracy {
|
---|
| 51 | get { return ((DoubleValue)this[TestAccuracyResultName].Value).Value; }
|
---|
| 52 | private set { ((DoubleValue)this[TestAccuracyResultName].Value).Value = value; }
|
---|
| 53 | }
|
---|
| 54 | #endregion
|
---|
| 55 |
|
---|
| 56 | [StorableConstructor]
|
---|
| 57 | protected ClassificationSolutionBase(bool deserializing) : base(deserializing) { }
|
---|
| 58 | protected ClassificationSolutionBase(ClassificationSolutionBase original, Cloner cloner)
|
---|
| 59 | : base(original, cloner) {
|
---|
| 60 | }
|
---|
| 61 | protected ClassificationSolutionBase(IClassificationModel model, IClassificationProblemData problemData)
|
---|
| 62 | : base(model, problemData) {
|
---|
| 63 | Add(new Result(TrainingAccuracyResultName, "Accuracy of the model on the training partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
| 64 | Add(new Result(TestAccuracyResultName, "Accuracy of the model on the test partition (percentage of correctly classified instances).", new PercentValue()));
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | protected void CalculateResults() {
|
---|
| 68 | double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values
|
---|
[6740] | 69 | double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToArray();
|
---|
[6589] | 70 | double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values
|
---|
[6740] | 71 | double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndizes).ToArray();
|
---|
[6589] | 72 |
|
---|
| 73 | OnlineCalculatorError errorState;
|
---|
| 74 | double trainingAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTrainingClassValues, originalTrainingClassValues, out errorState);
|
---|
| 75 | if (errorState != OnlineCalculatorError.None) trainingAccuracy = double.NaN;
|
---|
| 76 | double testAccuracy = OnlineAccuracyCalculator.Calculate(estimatedTestClassValues, originalTestClassValues, out errorState);
|
---|
| 77 | if (errorState != OnlineCalculatorError.None) testAccuracy = double.NaN;
|
---|
| 78 |
|
---|
| 79 | TrainingAccuracy = trainingAccuracy;
|
---|
| 80 | TestAccuracy = testAccuracy;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 | public abstract IEnumerable<double> EstimatedClassValues { get; }
|
---|
| 84 | public abstract IEnumerable<double> EstimatedTrainingClassValues { get; }
|
---|
| 85 | public abstract IEnumerable<double> EstimatedTestClassValues { get; }
|
---|
| 86 |
|
---|
| 87 | public abstract IEnumerable<double> GetEstimatedClassValues(IEnumerable<int> rows);
|
---|
| 88 | }
|
---|
| 89 | }
|
---|