Free cookie consent management tool by TermsFeed Policy Generator

source: branches/PersistenceSpeedUp/HeuristicLab.Problems.DataAnalysis.Views/3.4/Classification/ClassificationEnsembleSolutionEstimatedClassValuesView.cs @ 15529

Last change on this file since 15529 was 6760, checked in by epitzer, 13 years ago

#1530 integrate changes from trunk

File size: 8.2 KB
RevLine 
[5678]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21using System;
[6672]22using System.Collections.Generic;
[6680]23using System.Drawing;
[5678]24using System.Linq;
25using System.Windows.Forms;
26using HeuristicLab.Data;
27using HeuristicLab.MainForm;
28using HeuristicLab.MainForm.WindowsForms;
29
30namespace HeuristicLab.Problems.DataAnalysis.Views {
[5975]31  [View("Estimated Class Values")]
[6672]32  [Content(typeof(ClassificationEnsembleSolution))]
33  public partial class ClassificationEnsembleSolutionEstimatedClassValuesView :
34    ClassificationSolutionEstimatedClassValuesView {
35    private const string RowColumnName = "Row";
[6680]36    private const string TargetClassValuesColumnName = "Target Variable";
37    private const string EstimatedClassValuesColumnName = "Estimated Class Values";
38    private const string CorrectClassificationColumnName = "Correct Classification";
[6672]39    private const string ConfidenceColumnName = "Confidence";
[5678]40
[6672]41    private const string SamplesComboBoxAllSamples = "All Samples";
42    private const string SamplesComboBoxTrainingSamples = "Training Samples";
43    private const string SamplesComboBoxTestSamples = "Test Samples";
44
45    public new ClassificationEnsembleSolution Content {
46      get { return (ClassificationEnsembleSolution)base.Content; }
[6642]47      set { base.Content = value; }
[5678]48    }
49
[6672]50    public ClassificationEnsembleSolutionEstimatedClassValuesView()
[5678]51      : base() {
52      InitializeComponent();
[6672]53      SamplesComboBox.Items.AddRange(new string[] { SamplesComboBoxAllSamples, SamplesComboBoxTrainingSamples, SamplesComboBoxTestSamples });
54      SamplesComboBox.SelectedIndex = 0;
[6680]55      matrixView.DataGridView.RowPrePaint += new DataGridViewRowPrePaintEventHandler(DataGridView_RowPrePaint);
[5678]56    }
57
[6680]58
59
[6672]60    private void SamplesComboBox_SelectedIndexChanged(object sender, EventArgs e) {
61      UpdateEstimatedValues();
62    }
63
[6642]64    protected override void UpdateEstimatedValues() {
[6672]65      if (InvokeRequired) {
66        Invoke((Action)UpdateEstimatedValues);
67        return;
68      }
69      if (Content == null) {
70        matrixView.Content = null;
71        return;
72      }
[5678]73
[6672]74      int[] indizes;
75      double[] estimatedClassValues;
76
77      switch (SamplesComboBox.SelectedItem.ToString()) {
78        case SamplesComboBoxAllSamples: {
79            indizes = Enumerable.Range(0, Content.ProblemData.Dataset.Rows).ToArray();
80            estimatedClassValues = Content.EstimatedClassValues.ToArray();
81            break;
[5678]82          }
[6672]83        case SamplesComboBoxTrainingSamples: {
84            indizes = Content.ProblemData.TrainingIndizes.ToArray();
85            estimatedClassValues = Content.EstimatedTrainingClassValues.ToArray();
86            break;
87          }
88        case SamplesComboBoxTestSamples: {
89            indizes = Content.ProblemData.TestIndizes.ToArray();
90            estimatedClassValues = Content.EstimatedTestClassValues.ToArray();
91            break;
92          }
93        default:
94          throw new ArgumentException();
95      }
[5678]96
[6672]97      int classValuesCount = Content.ProblemData.ClassValues.Count;
98      int modelCount = Content.Model.Models.Count();
[6680]99      string[,] values = new string[indizes.Length, 5 + classValuesCount + modelCount];
[6740]100      double[] target = Content.ProblemData.Dataset.GetDoubleValues(Content.ProblemData.TargetVariable).ToArray();
[6672]101      List<List<double?>> estimatedValuesVector = GetEstimatedValues(SamplesComboBox.SelectedItem.ToString(), indizes,
102                                                            Content.ClassificationSolutions);
103
104      for (int i = 0; i < indizes.Length; i++) {
105        int row = indizes[i];
106        values[i, 0] = row.ToString();
107        values[i, 1] = target[i].ToString();
108        values[i, 2] = estimatedClassValues[i].ToString();
[6680]109        values[i, 3] = (target[i] == estimatedClassValues[i]).ToString();
[6672]110        var groups = estimatedValuesVector[i].GroupBy(x => x).Select(g => new { Key = g.Key, Count = g.Count() }).ToList();
111        var estimationCount = groups.Where(g => g.Key != null).Select(g => g.Count).Sum();
[6680]112        values[i, 4] = (((double)groups.Where(g => g.Key == estimatedClassValues[i]).Single().Count) / estimationCount).ToString();
[6672]113        for (int classIndex = 0; classIndex < Content.ProblemData.ClassValues.Count; classIndex++) {
114          var group = groups.Where(g => g.Key == Content.ProblemData.ClassValues[classIndex]).SingleOrDefault();
[6680]115          if (group == null) values[i, 5 + classIndex] = 0.ToString();
116          else values[i, 5 + classIndex] = group.Count.ToString();
[5678]117        }
[6672]118        for (int modelIndex = 0; modelIndex < estimatedValuesVector[i].Count; modelIndex++) {
[6680]119          values[i, 5 + classValuesCount + modelIndex] = estimatedValuesVector[i][modelIndex] == null
[6672]120                                                           ? string.Empty
121                                                           : estimatedValuesVector[i][modelIndex].ToString();
122        }
123
[5678]124      }
[6672]125
126      StringMatrix matrix = new StringMatrix(values);
[6680]127      List<string> columnNames = new List<string>() { "Id", TargetClassValuesColumnName, EstimatedClassValuesColumnName, CorrectClassificationColumnName, ConfidenceColumnName };
[6672]128      columnNames.AddRange(Content.ProblemData.ClassNames);
129      columnNames.AddRange(Content.Model.Models.Select(m => m.Name));
130      matrix.ColumnNames = columnNames;
131      matrix.SortableView = true;
132      matrixView.Content = matrix;
[6680]133      UpdateColoringOfRows();
[5678]134    }
[6672]135
136    private List<List<double?>> GetEstimatedValues(string samplesSelection, int[] rows, IEnumerable<IClassificationSolution> solutions) {
137      List<List<double?>> values = new List<List<double?>>();
138      int solutionIndex = 0;
139      foreach (var solution in solutions) {
140        double[] estimation = solution.GetEstimatedClassValues(rows).ToArray();
141        for (int i = 0; i < rows.Length; i++) {
142          var row = rows[i];
143          if (solutionIndex == 0) values.Add(new List<double?>());
144
145          if (samplesSelection == SamplesComboBoxAllSamples)
146            values[i].Add(estimation[i]);
147          else if (samplesSelection == SamplesComboBoxTrainingSamples && solution.ProblemData.IsTrainingSample(row))
148            values[i].Add(estimation[i]);
149          else if (samplesSelection == SamplesComboBoxTestSamples && solution.ProblemData.IsTestSample(row))
150            values[i].Add(estimation[i]);
151          else
152            values[i].Add(null);
153        }
154        solutionIndex++;
155      }
156      return values;
157    }
158
[6680]159    private void DataGridView_RowPrePaint(object sender, DataGridViewRowPrePaintEventArgs e) {
160      if (InvokeRequired) {
161        Invoke(new EventHandler<DataGridViewRowPrePaintEventArgs>(DataGridView_RowPrePaint), sender, e);
162        return;
163      }
164      bool correctClassified = bool.Parse(matrixView.DataGridView[3, e.RowIndex].Value.ToString());
165      matrixView.DataGridView.Rows[e.RowIndex].DefaultCellStyle.ForeColor = correctClassified ? Color.MediumSeaGreen : Color.Red;
166    }
[6672]167
[6680]168    private void UpdateColoringOfRows() {
169      if (InvokeRequired) {
170        Invoke((Action)UpdateColoringOfRows);
171        return;
172      }
173      //matrixView.DataGridView.SuspendRepaint();
174      //for (int i = 0; i < matrixView.DataGridView.Rows.Count; i++) {
175      //  bool correctClassified = bool.Parse(matrixView.Content.GetValue(i, 3));
176      //  matrixView.DataGridView.Rows[i].DefaultCellStyle.ForeColor = correctClassified ? Color.MediumSeaGreen : Color.Red;
177      //}
178      //matrixView.DataGridView.ResumeRepaint(true);
179    }
[5678]180  }
181}
Note: See TracBrowser for help on using the repository browser.