[5618] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.Linq;
|
---|
| 23 | using HeuristicLab.Common;
|
---|
| 24 | using HeuristicLab.Core;
|
---|
[5716] | 25 | using HeuristicLab.Parameters;
|
---|
[5618] | 26 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.Problems.DataAnalysis.Symbolic.Regression {
|
---|
| 29 | [Item("Symbolic Regression Problem (single objective)", "Represents a single objective symbolic regression problem.")]
|
---|
| 30 | [StorableClass]
|
---|
| 31 | [Creatable("Problems")]
|
---|
[5759] | 32 | public class SymbolicRegressionSingleObjectiveProblem : SymbolicDataAnalysisSingleObjectiveProblem<IRegressionProblemData, ISymbolicRegressionSingleObjectiveEvaluator, ISymbolicDataAnalysisSolutionCreator>, IRegressionProblem {
|
---|
[5618] | 33 | private const double PunishmentFactor = 10;
|
---|
[5685] | 34 | private const int InitialMaximumTreeDepth = 8;
|
---|
| 35 | private const int InitialMaximumTreeLength = 25;
|
---|
[5770] | 36 | private const string EstimationLimitsParameterName = "EstimationLimits";
|
---|
| 37 | private const string EstimationLimitsParameterDescription = "The limits for the estimated value that can be returned by the symbolic regression model.";
|
---|
[5716] | 38 |
|
---|
[5685] | 39 | #region parameter properties
|
---|
[5770] | 40 | public IFixedValueParameter<DoubleLimit> EstimationLimitsParameter {
|
---|
| 41 | get { return (IFixedValueParameter<DoubleLimit>)Parameters[EstimationLimitsParameterName]; }
|
---|
[5685] | 42 | }
|
---|
| 43 | #endregion
|
---|
| 44 | #region properties
|
---|
[5770] | 45 | public DoubleLimit EstimationLimits {
|
---|
| 46 | get { return EstimationLimitsParameter.Value; }
|
---|
[5685] | 47 | }
|
---|
| 48 | #endregion
|
---|
[5618] | 49 | [StorableConstructor]
|
---|
| 50 | protected SymbolicRegressionSingleObjectiveProblem(bool deserializing) : base(deserializing) { }
|
---|
| 51 | protected SymbolicRegressionSingleObjectiveProblem(SymbolicRegressionSingleObjectiveProblem original, Cloner cloner) : base(original, cloner) { }
|
---|
| 52 | public override IDeepCloneable Clone(Cloner cloner) { return new SymbolicRegressionSingleObjectiveProblem(this, cloner); }
|
---|
| 53 |
|
---|
| 54 | public SymbolicRegressionSingleObjectiveProblem()
|
---|
| 55 | : base(new RegressionProblemData(), new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator(), new SymbolicDataAnalysisExpressionTreeCreator()) {
|
---|
[5847] | 56 | Parameters.Add(new FixedValueParameter<DoubleLimit>(EstimationLimitsParameterName, EstimationLimitsParameterDescription));
|
---|
[5685] | 57 |
|
---|
[5854] | 58 | EstimationLimitsParameter.Hidden = true;
|
---|
| 59 |
|
---|
[5618] | 60 | Maximization.Value = true;
|
---|
[5685] | 61 | MaximumSymbolicExpressionTreeDepth.Value = InitialMaximumTreeDepth;
|
---|
| 62 | MaximumSymbolicExpressionTreeLength.Value = InitialMaximumTreeLength;
|
---|
| 63 |
|
---|
| 64 | InitializeOperators();
|
---|
[5716] | 65 | UpdateEstimationLimits();
|
---|
[5618] | 66 | }
|
---|
| 67 |
|
---|
[5685] | 68 | private void InitializeOperators() {
|
---|
| 69 | Operators.Add(new SymbolicRegressionSingleObjectiveTrainingBestSolutionAnalyzer());
|
---|
| 70 | Operators.Add(new SymbolicRegressionSingleObjectiveValidationBestSolutionAnalyzer());
|
---|
[5747] | 71 | Operators.Add(new SymbolicRegressionSingleObjectiveOverfittingAnalyzer());
|
---|
[5685] | 72 | ParameterizeOperators();
|
---|
| 73 | }
|
---|
[5716] | 74 |
|
---|
[5685] | 75 | private void UpdateEstimationLimits() {
|
---|
[6760] | 76 | if (ProblemData.TrainingIndizes.Any()) {
|
---|
| 77 | var targetValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndizes).ToList();
|
---|
[5618] | 78 | var mean = targetValues.Average();
|
---|
| 79 | var range = targetValues.Max() - targetValues.Min();
|
---|
[5770] | 80 | EstimationLimits.Upper = mean + PunishmentFactor * range;
|
---|
| 81 | EstimationLimits.Lower = mean - PunishmentFactor * range;
|
---|
[6760] | 82 | } else {
|
---|
| 83 | EstimationLimits.Upper = double.MaxValue;
|
---|
| 84 | EstimationLimits.Lower = double.MinValue;
|
---|
[5618] | 85 | }
|
---|
| 86 | }
|
---|
[5623] | 87 |
|
---|
[5685] | 88 | protected override void OnProblemDataChanged() {
|
---|
| 89 | base.OnProblemDataChanged();
|
---|
| 90 | UpdateEstimationLimits();
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | protected override void ParameterizeOperators() {
|
---|
| 94 | base.ParameterizeOperators();
|
---|
[5770] | 95 | if (Parameters.ContainsKey(EstimationLimitsParameterName)) {
|
---|
| 96 | var operators = Parameters.OfType<IValueParameter>().Select(p => p.Value).OfType<IOperator>().Union(Operators);
|
---|
| 97 | foreach (var op in operators.OfType<ISymbolicDataAnalysisBoundedOperator>()) {
|
---|
| 98 | op.EstimationLimitsParameter.ActualName = EstimationLimitsParameter.Name;
|
---|
| 99 | }
|
---|
[5685] | 100 | }
|
---|
| 101 | }
|
---|
| 102 |
|
---|
[5623] | 103 | public override void ImportProblemDataFromFile(string fileName) {
|
---|
| 104 | RegressionProblemData problemData = RegressionProblemData.ImportFromFile(fileName);
|
---|
| 105 | ProblemData = problemData;
|
---|
| 106 | }
|
---|
[5618] | 107 | }
|
---|
| 108 | }
|
---|