1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
27 | using HeuristicLab.Parameters;
|
---|
28 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
29 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
30 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Symbols;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Problems.DataAnalysis.Regression.Symbolic {
|
---|
33 | [Item("MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator", "Calculates the mean squared error and the number of variables of a symbolic regression solution.")]
|
---|
34 | [StorableClass]
|
---|
35 | public sealed class MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator : MultiObjectiveSymbolicRegressionEvaluator {
|
---|
36 | private const string UpperEstimationLimitParameterName = "UpperEstimationLimit";
|
---|
37 | private const string LowerEstimationLimitParameterName = "LowerEstimationLimit";
|
---|
38 |
|
---|
39 | #region parameter properties
|
---|
40 | public IValueLookupParameter<DoubleValue> UpperEstimationLimitParameter {
|
---|
41 | get { return (IValueLookupParameter<DoubleValue>)Parameters[UpperEstimationLimitParameterName]; }
|
---|
42 | }
|
---|
43 | public IValueLookupParameter<DoubleValue> LowerEstimationLimitParameter {
|
---|
44 | get { return (IValueLookupParameter<DoubleValue>)Parameters[LowerEstimationLimitParameterName]; }
|
---|
45 | }
|
---|
46 | #endregion
|
---|
47 | #region properties
|
---|
48 | public DoubleValue UpperEstimationLimit {
|
---|
49 | get { return UpperEstimationLimitParameter.ActualValue; }
|
---|
50 | }
|
---|
51 | public DoubleValue LowerEstimationLimit {
|
---|
52 | get { return LowerEstimationLimitParameter.ActualValue; }
|
---|
53 | }
|
---|
54 | #endregion
|
---|
55 | [StorableConstructor]
|
---|
56 | private MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator(bool deserializing) : base(deserializing) { }
|
---|
57 | private MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator(MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator original, Cloner cloner)
|
---|
58 | : base(original, cloner) {
|
---|
59 | }
|
---|
60 | public MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator()
|
---|
61 | : base() {
|
---|
62 | Parameters.Add(new ValueLookupParameter<DoubleValue>(UpperEstimationLimitParameterName, "The upper limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
63 | Parameters.Add(new ValueLookupParameter<DoubleValue>(LowerEstimationLimitParameterName, "The lower limit that should be used as cut off value for the output values of symbolic expression trees."));
|
---|
64 | }
|
---|
65 |
|
---|
66 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
67 | return new MultiObjectiveSymbolicRegressionMeanSquaredErrorEvaluator(this, cloner);
|
---|
68 | }
|
---|
69 |
|
---|
70 | protected override double[] Evaluate(ISymbolicExpressionTreeInterpreter interpreter, SymbolicExpressionTree solution, Dataset dataset, StringValue targetVariable, IEnumerable<int> rows) {
|
---|
71 | double upperEstimationLimit = UpperEstimationLimit != null ? UpperEstimationLimit.Value : double.PositiveInfinity;
|
---|
72 | double lowerEstimationLimit = LowerEstimationLimit != null ? LowerEstimationLimit.Value : double.NegativeInfinity;
|
---|
73 | double mse = SymbolicRegressionMeanSquaredErrorEvaluator.Calculate(interpreter, solution, lowerEstimationLimit, upperEstimationLimit, dataset, targetVariable.Value, rows);
|
---|
74 | return new double[2] { mse, solution.Size };
|
---|
75 | }
|
---|
76 | }
|
---|
77 | }
|
---|