1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Data;
|
---|
24 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Analysis.Tests {
|
---|
27 | [TestClass]
|
---|
28 | public class MultidimensionalScalingTest {
|
---|
29 | [TestMethod]
|
---|
30 | public void TestGoodnessOfFit() {
|
---|
31 | double stress;
|
---|
32 | DoubleMatrix distances3 = new DoubleMatrix(3, 3);
|
---|
33 | // Example 1: A right triangle
|
---|
34 | distances3[0, 1] = distances3[1, 0] = 3;
|
---|
35 | distances3[0, 2] = distances3[2, 0] = 4;
|
---|
36 | distances3[1, 2] = distances3[2, 1] = 5;
|
---|
37 | stress = MultidimensionalScaling.CalculateNormalizedStress(distances3,
|
---|
38 | MultidimensionalScaling.KruskalShepard(distances3));
|
---|
39 | Assert.IsTrue(stress < 0.1);
|
---|
40 | // Example 2: An arbitrary triangle
|
---|
41 | distances3[0, 1] = distances3[1, 0] = 8;
|
---|
42 | distances3[0, 2] = distances3[2, 0] = 6.4;
|
---|
43 | distances3[1, 2] = distances3[2, 1] = 5;
|
---|
44 | stress = MultidimensionalScaling.CalculateNormalizedStress(distances3,
|
---|
45 | MultidimensionalScaling.KruskalShepard(distances3));
|
---|
46 | Assert.IsTrue(stress < 0.1);
|
---|
47 | DoubleMatrix distances4 = new DoubleMatrix(4, 4);
|
---|
48 | // Example 3: A small square
|
---|
49 | distances4[0, 1] = distances4[1, 0] = 1;
|
---|
50 | distances4[0, 2] = distances4[2, 0] = Math.Sqrt(2);
|
---|
51 | distances4[0, 3] = distances4[3, 0] = 1;
|
---|
52 | distances4[1, 2] = distances4[2, 1] = 1;
|
---|
53 | distances4[1, 3] = distances4[3, 1] = Math.Sqrt(2);
|
---|
54 | distances4[2, 3] = distances4[3, 2] = 1;
|
---|
55 | stress = MultidimensionalScaling.CalculateNormalizedStress(distances4,
|
---|
56 | MultidimensionalScaling.KruskalShepard(distances4));
|
---|
57 | Assert.IsTrue(stress < 0.1);
|
---|
58 | // Example 4: A large square
|
---|
59 | distances4[0, 1] = distances4[1, 0] = 1000;
|
---|
60 | distances4[0, 2] = distances4[2, 0] = Math.Sqrt(2000000);
|
---|
61 | distances4[0, 3] = distances4[3, 0] = 1000;
|
---|
62 | distances4[1, 2] = distances4[2, 1] = 1000;
|
---|
63 | distances4[1, 3] = distances4[3, 1] = Math.Sqrt(2000000);
|
---|
64 | distances4[2, 3] = distances4[3, 2] = 1000;
|
---|
65 | stress = MultidimensionalScaling.CalculateNormalizedStress(distances4,
|
---|
66 | MultidimensionalScaling.KruskalShepard(distances4));
|
---|
67 | Assert.IsTrue(stress < 0.1);
|
---|
68 | // Example 5: An arbitrary cloud of 8 points in a plane
|
---|
69 | DoubleMatrix distancesK = GetDistances(new double[,] { { 2, 1 }, { 5, 2 }, { 7, 1 }, { 4, 0 }, { 3, 3 }, { 4, 2 }, { 1, 8 }, { 6, 3 } });
|
---|
70 | stress = MultidimensionalScaling.CalculateNormalizedStress(distancesK,
|
---|
71 | MultidimensionalScaling.KruskalShepard(distancesK));
|
---|
72 | Assert.IsTrue(stress < 0.1);
|
---|
73 | // Example 6: A tetrahedron
|
---|
74 | distancesK = GetDistances(new double[,] { { 0, 0, 0 }, { 4, 0, 0 }, { 2, 3.4641, 0 }, { 2, 1.1547, 3.2660 } });
|
---|
75 | stress = MultidimensionalScaling.CalculateNormalizedStress(distancesK,
|
---|
76 | MultidimensionalScaling.KruskalShepard(distancesK));
|
---|
77 | Assert.IsTrue(stress < 0.1);
|
---|
78 | // Example 7: A matrix of perceived dissimilarities between 14 colors, published in the literature
|
---|
79 | distancesK = new DoubleMatrix(new double[,] {
|
---|
80 | { 0.00, 0.14, 0.58, 0.58, 0.82, 0.94, 0.93, 0.96, 0.98, 0.93, 0.91, 0.88, 0.87, 0.84 },
|
---|
81 | { 0.14, 0.00, 0.50, 0.56, 0.78, 0.91, 0.93, 0.93, 0.98, 0.96, 0.93, 0.89, 0.87, 0.86 },
|
---|
82 | { 0.58, 0.50, 0.00, 0.19, 0.53, 0.83, 0.90, 0.92, 0.98, 0.99, 0.98, 0.99, 0.95, 0.97 },
|
---|
83 | { 0.58, 0.56, 0.19, 0.00, 0.46, 0.75, 0.90, 0.91, 0.98, 0.99, 1.00, 0.99, 0.98, 0.96 },
|
---|
84 | { 0.82, 0.78, 0.53, 0.46, 0.00, 0.39, 0.69, 0.74, 0.93, 0.98, 0.98, 0.99, 0.98, 1.00 },
|
---|
85 | { 0.94, 0.91, 0.83, 0.75, 0.39, 0.00, 0.38, 0.55, 0.86, 0.92, 0.98, 0.98, 0.98, 0.99 },
|
---|
86 | { 0.93, 0.93, 0.90, 0.90, 0.69, 0.38, 0.00, 0.27, 0.78, 0.86, 0.95, 0.98, 0.98, 1.00 },
|
---|
87 | { 0.96, 0.93, 0.92, 0.91, 0.74, 0.55, 0.27, 0.00, 0.67, 0.81, 0.96, 0.97, 0.98, 0.98 },
|
---|
88 | { 0.98, 0.98, 0.98, 0.98, 0.93, 0.86, 0.78, 0.67, 0.00, 0.42, 0.63, 0.73, 0.80, 0.77 },
|
---|
89 | { 0.93, 0.96, 0.99, 0.99, 0.98, 0.92, 0.86, 0.81, 0.42, 0.00, 0.26, 0.50, 0.59, 0.72 },
|
---|
90 | { 0.91, 0.93, 0.98, 1.00, 0.98, 0.98, 0.95, 0.96, 0.63, 0.26, 0.00, 0.24, 0.38, 0.45 },
|
---|
91 | { 0.88, 0.89, 0.99, 0.99, 0.99, 0.98, 0.98, 0.97, 0.73, 0.50, 0.24, 0.00, 0.15, 0.32 },
|
---|
92 | { 0.87, 0.87, 0.95, 0.98, 0.98, 0.98, 0.98, 0.98, 0.80, 0.59, 0.38, 0.15, 0.00, 0.24 },
|
---|
93 | { 0.84, 0.86, 0.97, 0.96, 1.00, 0.99, 1.00, 0.98, 0.77, 0.72, 0.45, 0.32, 0.24, 0.00 }});
|
---|
94 | stress = MultidimensionalScaling.CalculateNormalizedStress(distancesK,
|
---|
95 | MultidimensionalScaling.KruskalShepard(distancesK));
|
---|
96 | Assert.IsTrue(stress < 0.1);
|
---|
97 | }
|
---|
98 |
|
---|
99 | internal DoubleMatrix GetDistances(double[,] coordinates) {
|
---|
100 | int dimension = coordinates.GetLength(0);
|
---|
101 | DoubleMatrix distances = new DoubleMatrix(dimension, dimension);
|
---|
102 | for (int i = 0; i < dimension - 1; i++)
|
---|
103 | for (int j = i + 1; j < dimension; j++) {
|
---|
104 | double sum = 0;
|
---|
105 | for (int k = 0; k < coordinates.GetLength(1); k++)
|
---|
106 | sum += (coordinates[i, k] - coordinates[j, k]) * (coordinates[i, k] - coordinates[j, k]);
|
---|
107 | distances[i, j] = distances[j, i] = Math.Sqrt(sum);
|
---|
108 | }
|
---|
109 | return distances;
|
---|
110 | }
|
---|
111 | }
|
---|
112 | }
|
---|